366 research outputs found

    Dynamical Hartree-Fock-Bogoliubov Theory of Vortices in Bose-Einstein Condensates at Finite Temperature

    Full text link
    We present a method utilizing the continuity equation for the condensate density to make predictions of the precessional frequency of single off-axis vortices and of vortex arrays in Bose-Einstein condensates at finite temperature. We also present an orthogonalized Hartree-Fock-Bogoliubov (HFB) formalism. We solve the continuity equation for the condensate density self-consistently with the orthogonalized HFB equations, and find stationary solutions in the frame rotating at this frequency. As an example of the utility of this formalism we obtain time-independent solutions for quasi-two-dimensional rotating systems in the co-rotating frame. We compare these results with time-dependent predictions where we simulate stirring of the condensate.Comment: 13 pages, 11 figures, 1 tabl

    Nonlinear Transformation for a Class of Gauged Schroedinger Equations with Complex Nonlinearities

    Get PDF
    In the present contribution we consider a class of Schroedinger equations containing complex nonlinearities, describing systems with conserved norm ψ2|\psi|^2 and minimally coupled to an abelian gauge field. We introduce a nonlinear transformation which permits the linearization of the source term in the evolution equations for the gauge field, and transforms the nonlinear Schroedinger equations in another one with real nonlinearities. We show that this transformation can be performed either on the gauge field AμA_\mu or, equivalently, on the matter field ψ\psi. Since the transformation does not change the quantities ψ2|\psi|^2 and FμνF_{\mu\nu}, it can be considered a generalization of the gauge transformation of third kind introduced some years ago by other authors. Pacs numbers: 03.65.-w, 11.15.-qComment: 4pages, two columns, RevTeX4, no figure

    Nonlinear physics of the ionosphere and LOIS/LOFAR

    Full text link
    The ionosphere is the only large-scale plasma laboratory without walls that we have direct access to. From results obtained in systematic, repeatable experiments in this natural laboratory, where we can vary the stimulus and observe its response in a controlled, repeatable manner, we can draw conclusions on similar physical processes occurring naturally in the Earth's plasma environment as well as in parts of the plasma universe that are not easily accessible to direct probing. Of particular interest is electromagnetic turbulence excited in the ionosphere by beams of particles (photons, electrons) and its manifestation in terms of secondary radiation (electrostatic and electromagnetic waves), structure formation (solitons, cavitons, alfveons, striations), and the associated exchange of energy, linear momentum, and angular momentum. We present a new diagnostic technique, based on vector radio allowing the utilization of EM angular momentum (vorticity), to study plasma turbulence remotely.Comment: Six pages, two figures. To appear in Plasma Physics and Controlled Fusio

    Tools in the orbit space approach to the study of invariant functions: rational parametrization of strata

    Full text link
    Functions which are equivariant or invariant under the transformations of a compact linear group GG acting in an euclidean space n\real^n, can profitably be studied as functions defined in the orbit space of the group. The orbit space is the union of a finite set of strata, which are semialgebraic manifolds formed by the GG-orbits with the same orbit-type. In this paper we provide a simple recipe to obtain rational parametrizations of the strata. Our results can be easily exploited, in many physical contexts where the study of equivariant or invariant functions is important, for instance in the determination of patterns of spontaneous symmetry breaking, in the analysis of phase spaces and structural phase transitions (Landau theory), in equivariant bifurcation theory, in crystal field theory and in most areas where use is made of symmetry adapted functions. A physically significant example of utilization of the recipe is given, related to spontaneous polarization in chiral biaxial liquid crystals, where the advantages with respect to previous heuristic approaches are shown.Comment: Figures generated through texdraw package; revised version appearing in J. Phys. A: Math. Ge

    Noether symmetries for two-dimensional charged particle motion

    Full text link
    We find the Noether point symmetries for non-relativistic two-dimensional charged particle motion. These symmetries are composed of a quasi-invariance transformation, a time-dependent rotation and a time-dependent spatial translation. The associated electromagnetic field satisfy a system of first-order linear partial differential equations. This system is solved exactly, yielding three classes of electromagnetic fields compatible with Noether point symmetries. The corresponding Noether invariants are derived and interpreted

    Symmetry, singularities and integrability in complex dynamics III: approximate symmetries and invariants

    Full text link
    The different natures of approximate symmetries and their corresponding first integrals/invariants are delineated in the contexts of both Lie symmetries of ordinary differential equations and Noether symmetries of the Action Integral. Particular note is taken of the effect of taking higher orders of the perturbation parameter. Approximate symmetries of approximate first integrals/invariants and the problems of calculating them using the Lie method are considered

    Duality between integrable Stackel systems

    Full text link
    For the Stackel family of the integrable systems a non-canonical transformation of the time variable is considered. This transformation may be associated to the ambiguity of the Abel map on the corresponding hyperelliptic curve. For some Stackel's systems with two degrees of freedom the 2x2 Lax representations and the dynamical r-matrix algebras are constructed. As an examples the Henon-Heiles systems, integrable Holt potentials and the integrable deformations of the Kepler problem are discussed in detail.Comment: LaTeX2e, 18 page

    Analysing the elasticity difference tensor of general relativity

    Get PDF
    The elasticity difference tensor, used in [1] to describe elasticity properties of a continuous medium filling a space-time, is here analysed from the point of view of the space-time connection. Principal directions associated with this tensor are compared with eigendirections of the material metric. Examples concerning spherically symmetric and axially symmetric space-times are then presented.Comment: 17 page

    On the classical central charge

    Full text link
    In the canonical formulation of a classical field theory, symmetry properties are encoded in the Poisson bracket algebra, which may have a central term. Starting from this well understood canonical structure, we derive the related Lagrangian form of the central term.Comment: 23 pages, RevTeX, no figures; introduction improved, a few references adde
    corecore