351 research outputs found

    Discriminating between overshooting and rotational mixing in massive stars: any help from asteroseismology?

    Full text link
    Chemical turbulent mixing induced by rotation can affect the internal distribution of mu near the energy-generating core of main-sequence stars, having an effect on the evolutionary tracks similar to that of overshooting. However, this mixing also leads to a smoother chemical composition profile near the edge of the convective core, which is reflected in the behaviour of the buoyancy frequency and, therefore, in the frequencies of gravity modes. We show that for rotational velocities typical of main-sequence B-type pulsating stars, the signature of a rotationally induced mixing significantly perturbs the spectrum of gravity modes and mixed modes, and can be distinguished from that of overshooting. The cases of high-order gravity modes in Slowly Pulsating B stars and of low-order g modes and mixed modes in beta Cephei stars are discussed.Comment: 6 pages, 4 figures, Comm. in Asteroseismology, Contribution to the Proceedings of the 38th LIAC, HELAS-ESTA, BAG, 200

    The Old Halo metallicity gradient: the trace of a self-enrichment process

    Get PDF
    Based on a model of globular cluster self-enrichment published in a previous paper, we present an explanation for the metallicity gradient observed throughout the galactic Old Halo. Our self-enrichment model is based on the ability of globular cluster progenitor clouds to retain the ejecta of a first generation of Type II Supernovae. The key point is that this ability depends on the pressure exerted on the progenitor cloud by the surrounding protogalactic medium and therefore on the location of the cloud in the protoGalaxy. Since there is no significant (if any) metallicity gradient in the whole halo, we also present a review in favour of a galactic halo partly build via accretions and mergers of satellite systems. Some of them bear their own globular clusters and therefore ``contaminate'' the system of globular clusters formed ``in situ'', namely within the original potential well of the Galaxy. Therefore, the comparison between our self-enrichment model and the observational data should be limited to the genuine galactic globular clusters, the so-called Old Halo group.Comment: 11 pages, 4 figures, accepted for publication in Astronomy and Astrophysic

    The self-enrichment of galactic halo globular clusters : a clue to their formation ?

    Get PDF
    We present a model of globular cluster self-enrichment. In the protogalaxy, cold and dense clouds embedded in the hot protogalactic medium are assumed to be the progenitors of galactic halo globular clusters. The massive stars of a first generation of metal-free stars, born in the central areas of the proto-globular cluster clouds, explode as Type II supernovae. The associated blast waves trigger the expansion of a supershell, sweeping all the material of the cloud, and the heavy elements released by these massive stars enrich the supershell. A second generation of stars is born in these compressed and enriched layers of gas. These stars can recollapse and form a globular cluster. This work aims at revising the most often encountered argument against self-enrichment, namely the presumed ability of a small number of supernovae to disrupt a proto-globular cluster cloud. We describe a model of the dynamics of the supershell and of its progressive chemical enrichment. We show that the minimal mass of the primordial cluster cloud required to avoid disruption by several tens of Type II supernovae is compatible with the masses usually assumed for proto-globular cluster clouds. Furthermore, the corresponding self-enrichment level is in agreement with halo globular cluster metallicities.Comment: 12 pages, 7 figures. Accepted for publication in Astronomy and Astrophysic

    Theoretical seismic properties of pre-main sequence gamma Doradus pulsators

    Full text link
    Context. gamma Doradus (gamma Dor) are late A and F-type stars pulsating with high order gravity modes (g-modes). The existence of different evolutionary phases crossing the gamma Dor instability strip raises the question of the existence of pre-main sequence (PMS) gamma Dor stars. Aims. We intend to study the differences between the asteroseismic behaviour of PMS and main sequence (MS) gamma Dor pulsators as it is predicted by the current theory of stellar evolution and stability. Methods. We explore the adiabatic and non-adiabatic properties of high order g-modes in a grid of PMS and MS models covering the mass range 1.2 Msun < Mstar < 2.5 Msun. Results. We derive the theoretical instability strip (IS) for the PMS gamma Dor pulsators. This IS covers the same effective temperature range as the MS gamma Dor one. Nevertheless, the frequency domain of unstable modes in PMS models with a fully radiative core is larger than in MS models, even if they present the same number of unstable modes. Moreover, the differences between MS and PMS internal structures are reflected on the average values of the period spacing as well as on the dependence of the period spacing on the radial order of the modes, opening the window to the determination of the evolutionary phase of gamma Dor stars from their pulsation spectra.Comment: 9 pages, 17 figures, accepted for publication in A&

    Effects of rotation on the evolution and asteroseismic properties of red giants

    Full text link
    The influence of rotation on the properties of red giants is studied in the context of the asteroseismic modelling of these stars. While red giants exhibit low surface rotational velocities, we find that the rotational history of the star has a large impact on its properties during the red giant phase. In particular, for stars massive enough to ignite He burning in non-degenerate conditions, rotational mixing induces a significant increase of the stellar luminosity and shifts the location of the core helium burning phase to a higher luminosity in the HR diagram. This of course results in a change of the seismic properties of red giants at the same evolutionary state. As a consequence the inclusion of rotation significantly changes the fundamental parameters of a red giant star as determined by performing an asteroseismic calibration. In particular rotation decreases the derived stellar mass and increases the age. Depending on the rotation law assumed in the convective envelope and on the initial velocity of the star, non-negligible values of rotational splitting can be reached, which may complicate the observation and identification of non-radial oscillation modes for red giants exhibiting moderate surface rotational velocities. By comparing the effects of rotation and overshooting, we find that the main-sequence widening and the increase of the H-burning lifetime induced by rotation (Vini=150 km/s) are well reproduced by non-rotating models with an overshooting parameter of 0.1, while the increase of luminosity during the post-main sequence evolution is better reproduced by non-rotating models with overshooting parameters twice as large. This is due to the fact that rotation not only increases the size of the convective core but also changes the chemical composition of the radiative zone.Comment: 9 pages, 13 figures, accepted for publication in A&

    Asteroseismology of red-clump stars with CoRoT and Kepler

    Full text link
    The availability of asteroseismic constraints for a large number of red giants with CoRoT and in the near future with Kepler, paves the way for detailed studies of populations of galactic-disk red giants. We investigate which information on the observed population can be recovered by the distribution of the observed seismic constraints: the frequency of maximum power of solar-like oscillations (νmax\nu_{max}) and the large frequency separation (Δν\Delta\nu). We use the distribution of νmax\nu_{max} and of Δν\Delta\nu observed by CoRoT in nearly 800 red giants in the first long observational run, as a tool to investigate the properties of galactic red-giant stars through the comparison with simulated distributions based on synthetic stellar populations. We can clearly identify the bulk of the red giants observed by CoRoT as red-clump stars, i.e. post-flash core-He-burning stars. The distribution of νmax\nu_{max} and of Δν\Delta\nu give us access to the distribution of the stellar radius and mass, and thus represent a most promising probe of the age and star formation rate of the disk, and of the mass-loss rate during the red-giant branch. This approach will be of great utility also in the interpretation of forthcoming surveys of variability of red giants with CoRoT and Kepler. In particular, an asteroseismic mass estimate of clump stars in the old-open clusters observed by Kepler, would represent a most valuable observational test of the poorly known mass-loss rate on the giant branch, and of its dependence on metallicity.Comment: 5 pages, 6 figures, proceeding for "Stellar Pulsation: Challenges for Theory and Observation", Santa Fe 200

    Hybrid gamma Doradus/delta Scuti Stars: Comparison Between Observations and Theory

    Full text link
    Gamma Doradus are F-type stars pulsating with high order g-modes. Their instability strip (IS) overlaps the red edge of the delta Scuti one. This observation has led to search for objects in this region of the HR diagram showing p and g-modes simultaneously. The existence of such hybrid pulsators has recently been confirmed (Handler 2009) and the number of candidates is increasing (Matthews 2007). From a theoretical point of view, non-adiabatic computations including a time-dependent treatment of convection (TDC) predict the existence of gamma Dor/delta Sct hybrid pulsators (Dupret et al. 2004; Grigahcene et al. 2006). Our aim is to confront the properties of the observed hybrid candidates with the theoretical predictions from non-adiabatic computations of non-radial pulsations including the convection-pulsation interaction.Comment: 3 pages, 3 figures, Poster at "Stellar Pulsation: challenges for theory and observation", Santa Fe, June 200

    V.3 Present and future space missions for ultra-precision photometry

    Get PDF
    This book is dedicated to all the people interested in the CoRoT mission and the beautiful data that were delivered during its six year duration. Either amateurs, professional, young or senior researchers, they will find treasures not only at the time of this publication but also in the future twenty or thirty years. It presents the data in their final version, explains how they have been obtained, how to handle them, describes the tools necessary to understand them, and where to find them. It also highlights the most striking first results obtained up to now. CoRoT has opened several unexpected directions of research and certainly new ones still to be discovered
    corecore