35 research outputs found

    Pimavanserin and Lorcaserin Attenuate Measures of Binge Eating in Male Sprague-Dawley Rats

    Get PDF
    Binge eating disorder (BED) is characterized by dysregulated feeding and reward-related processes, and treatment is often challenged by limited therapeutic options. The serotonin (5-HT) 5-HT2A receptor (5-HT2AR) and 5-HT2CR are implicated in both feeding-related and reward-related behaviors and are thus poised to regulate BED-related behaviors. The purpose of this study was to assess the efficacy of the FDA-approved medications pimavanserin, a 5-HT2AR antagonist/inverse agonist, and lorcaserin, a 5-HT2CR agonist, in a rodent model of binge eating. The effects of pimavanserin (0.3–3.0 mg/kg), lorcaserin (0.25–1.0 mg/kg), and the lowest effective dose of pimavanserin (0.3 mg/kg) plus lorcaserin (1.0 mg/kg) were tested in a high-fat food (HFF) intermittent access binge eating model in adult male Sprague-Dawley rats (n = 64). We assessed three measures related to binge eating – binge episode occurrence, binge intake, and weight gain associated with HFF access. Pimavanserin decreased binge intake and weight gain associated with HFF access, but did not prevent binge episode occurrence. Lorcaserin decreased binge intake, but did not prevent binge episode occurrence or weight gain associated with HFF access. Combined pimavanserin plus lorcaserin prevented binge episode occurrence in addition to decreasing binge intake and weight gain associated with HFF access. These preclinical findings in male rats suggest that pimavanserin and lorcaserin may be effective in treating patients with BED. Our studies further indicate that administration of one or both drugs may be more effective in certain sub-populations of patients with BED because of the unique profile each treatment elicits. These data support future assessment in clinical populations with BED

    Heightened cocaine-seeking in male rats associates with a distinct transcriptomic profile in the medial prefrontal cortex

    Get PDF
    Drug overdose deaths involving cocaine have skyrocketed, an outcome attributable in part to the lack of FDA-approved medications for the treatment of cocaine use disorder (CUD), highlighting the need to identify new pharmacotherapeutic targets. Vulnerability to cocaine-associated environmental contexts and stimuli serves as a risk factor for relapse in CUD recovery, with individual differences evident in the motivational aspects of these cues. The medial prefrontal cortex (mPFC) provides top-down control of striatal circuitry to regulate the incentive-motivational properties of cocaine-associated stimuli. Clinical and preclinical studies have identified genetic variations that impact the degree of executive restraint over drug-motivated behaviors, and we designed the present study to employ next-generation sequencing to identify specific genes associated with heightened cue-evoked cocaine-seeking in the mPFC of male, outbred rats. Rats were trained to stably self-administer cocaine, and baseline cue-reinforced cocaine-seeking was established. Rats were phenotyped as either high cue (HC) or low cue (LC) responders based upon lever pressing for previously associated cocaine cues and allowed 10 days of abstinence in their home cages prior to mPFC collection for RNA-sequencing. The expression of 309 genes in the mPFC was significantly different in HC vs. LC rats. Functional gene enrichment analyses identified ten biological processes that were overrepresented in the mPFC of HC vs. LC rats. The present study identifies distinctions in mPFC mRNA transcripts that characterizes individual differences in relapse-like behavior and provides prioritized candidates for future pharmacotherapeutics aimed to help maintain abstinence in CUD. In particular the Htr2c gene, which encodes the serotonin 5-HT2C receptor (5-HT2CR), is expressed to a lower extent in HC rats, relative to LC rats. These findings build on a plethora of previous studies that also point to the 5-HT2CR as an attractive target for the treatment of CUD

    Ghrelin receptor antagonist JMV2959 blunts cocaine and oxycodone drug-seeking, but not self-administration, in male rats

    Get PDF
    The drug overdose crisis has spawned serious health consequences, including the increased incidence of substance use disorders (SUDs), conditions manifested by escalating medical and psychological impairments. While medication management is a key adjunct in SUD treatment, this crisis has crystallized the need to develop additional therapeutics to facilitate extended recovery from SUDs. The “hunger hormone” ghrelin acts by binding to the growth hormone secretagogue receptor 1α (GHS1αR) to control homeostatic and hedonic aspects of food intake and has been implicated in the mechanisms underlying SUDs. Preclinical studies indicate that GHS1αR antagonists and inverse agonists suppress reward-related signaling associated with cocaine and opioids. In the present study, we found that the GHS1αR antagonist JMV2959 was efficacious to suppress both cue-reinforced cocaine and oxycodone drug-seeking, but not cocaine or oxycodone self-administration in male Sprague-Dawley rats. These data suggest a role of the ghrelin-GHS1αR axis in mediating overlapping reward-related aspects of cocaine and oxycodone and premises the possibility that a GHS1αR antagonist may be a valuable therapeutic strategy for relapse vulnerability in SUDs

    AI is a viable alternative to high throughput screening: a 318-target study

    Get PDF
    : High throughput screening (HTS) is routinely used to identify bioactive small molecules. This requires physical compounds, which limits coverage of accessible chemical space. Computational approaches combined with vast on-demand chemical libraries can access far greater chemical space, provided that the predictive accuracy is sufficient to identify useful molecules. Through the largest and most diverse virtual HTS campaign reported to date, comprising 318 individual projects, we demonstrate that our AtomNet® convolutional neural network successfully finds novel hits across every major therapeutic area and protein class. We address historical limitations of computational screening by demonstrating success for target proteins without known binders, high-quality X-ray crystal structures, or manual cherry-picking of compounds. We show that the molecules selected by the AtomNet® model are novel drug-like scaffolds rather than minor modifications to known bioactive compounds. Our empirical results suggest that computational methods can substantially replace HTS as the first step of small-molecule drug discovery

    Binge-Type Eating in Rats is Facilitated by Neuromedin U Receptor 2 in the Nucleus Accumbens and Ventral Tegmental Area

    No full text
    Binge-eating disorder (BED) is the most common eating disorder, characterized by rapid, recurrent overconsumption of highly palatable food in a short time frame. BED shares an overlapping behavioral phenotype with obesity, which is also linked to the overconsumption of highly palatable foods. The reinforcing properties of highly palatable foods are mediated by the nucleus accumbens (NAc) and the ventral tegmental area (VTA), which have been implicated in the overconsumption behavior observed in BED and obesity. A potential regulator of binge-type eating behavior is the G protein-coupled receptor neuromedin U receptor 2 (NMUR2). Previous research demonstrated that NMUR2 knockdown potentiates binge-type consumption of high-fat food. We correlated binge-type consumption across a spectrum of fat and carbohydrate mixtures with synaptosomal NMUR2 protein expression in the NAc and VTA of rats. Synaptosomal NMUR2 protein in the NAc demonstrated a strong positive correlation with binge intake of a “lower„-fat (higher carbohydrate) mixture, whereas synaptosomal NMUR2 protein in the VTA demonstrated a strong negative correlation with binge intake of an “extreme„ high-fat (0% carbohydrate) mixture. Taken together, these data suggest that NMUR2 may differentially regulate binge-type eating within the NAc and the VTA

    Biophysical validation of serotonin 5-HT2A and 5-HT2C receptor interaction.

    No full text
    The serotonin (5-HT) 5-HT2A receptor (5-HT2AR) and 5-HT2C receptor (5-HT2CR) in the central nervous system are implicated in a range of normal behaviors (e.g., appetite, sleep) and physiological functions (e.g., endocrine secretion) while dysfunctional 5-HT2AR and/or 5-HT2CR are implicated in neuropsychiatric disorders (e.g., addiction, obesity, schizophrenia). Preclinical studies suggest that the 5-HT2AR and 5-HT2CR may act in concert to regulate the neural bases for behavior. Here, we utilize three distinct biophysical and immunocytochemistry-based approaches to identify and study this receptor complex in cultured cells. Employing a split luciferase complementation assay (LCA), we demonstrated that formation of the 5-HT2AR:5-HT2CR complex exists within 50 nm, increases proportionally to the 5-HT2CR:5-HT2AR protein expression ratio, and is specific to the receptor interaction and not due to random complementation of the luciferase fragments. Using a proximity ligation assay (PLA), we found that cells stably expressing both the 5-HT2AR and 5-HT2CR exhibit 5-HT2AR:5-HT2CR heteroreceptor complexes within 40 nm of each other. Lastly, bioluminescence resonance energy transfer (BRET) analyses indicates the formation of a specific and saturable 5-HT2AR:5-HT2CR interaction, suggesting that the 5-HT2AR and 5-HT2CR form a close interaction within 10 nm of each other in intact live cells. The bioengineered receptors generated for the LCA and the BRET exhibit 5-HT-mediated intracellular calcium signaling as seen for the native receptors. Taken together, this study validates a very close 5-HT2AR:5-HT2CR interaction in cultured cells

    Synthesis and Structure–Activity Relationships of Tool Compounds Based on WAY163909, a 5‑HT<sub>2C</sub> Receptor Agonist

    No full text
    The development of probe molecules that can be used to investigate G protein-coupled receptor (GPCR) pharmacology, trafficking, and relationship with other GPCRs is an important and growing area of research. Here, we report the synthesis of analogues of the known selective serotonin (5-HT) 5-HT<sub>2C</sub> receptor (5-HT<sub>2C</sub>R) agonist WAY163909 which were designed to allow for the attachment of a second ligand, signaling or reporter molecules, as well as immobilization agents to the parent molecule with the maintenance of agonist activity. This goal was accomplished by the synthesis of novel molecules in which sites <b>a</b>–<b>d</b> were modified and resulting compounds were analyzed pharmacologically in vitro
    corecore