36 research outputs found

    Bayesian Analysis of the Polarization of Distant Radio Sources: Limits on Cosmological Birefringence

    Get PDF
    A recent study of the rotation of the plane of polarization of light from 160 cosmological sources claims to find significant evidence for cosmological anisotropy. We point out methodological weaknesses of that study, and reanalyze the same data using Bayesian methods that overcome these problems. We find that the data always favor isotropic models for the distribution of observed polarizations over counterparts that have a cosmological anisotropy of the type advocated in the earlier study. Although anisotropic models are not completely ruled out, the data put strong lower limits on the length scale λ\lambda (in units of the Hubble length) associated with the anisotropy; the lower limits of 95% credible regions for λ\lambda lie between 0.43 and 0.62 in all anisotropic models we studied, values several times larger than the best-fit value of λ0.1\lambda \approx 0.1 found in the earlier study. The length scale is not constrained from above. The vast majority of sources in the data are at distances closer than 0.4 Hubble lengths (corresponding to a redshift of \approx0.8); the results are thus consistent with there being no significant anisotropy on the length scale probed by these data.Comment: 8 pages, 3 figures; submitted to Phys. Rev.

    Dynamical Lorentz simmetry breaking from 3+1 Axion-Wess-Zumino model

    Get PDF
    We study the renormalizable abelian vector-field models in the presence of the Wess-Zumino interaction with the pseudoscalar matter. The renormalizability is achieved by supplementing the standard kinetic term of vector fields with higher derivatives. The appearance of fourth power of momentum in the vector-field propagator leads to the super-renormalizable theory in which the β\beta-function, the vector-field renormalization constant and the anomalous mass dimension are calculated exactly. It is shown that this model has the infrared stable fixed point and its low-energy limit is non-trivial. The modified effective potential for the pseudoscalar matter leads to the possible occurrence of dynamical breaking of the Lorentz symmetry. This phenomenon is related to the modification of Electrodynamics by means of the Chern-Simons (CS) interaction polarized along a constant CS vector. Its presence makes the vacuum optically active that has been recently estimated from astrophysical data. We examine two possibilities for the CS vector to be time-like or space-like, under the assumption that it originates from v.e.v. of some pseudoscalar matter and show that only the latter one is consistent in the framework of the AWZ model, because a time-like CS vector makes the vacuum unstable under pairs creation of tachyonic photon modes with the finite vacuum decay rate.Comment: 33 pages, no Figures, Plain TeX, submitted to Phys. Rev.

    Cosmic optical activity in the spacetime of a scalar-tensor screwed cosmic string

    Full text link
    Measurements of radio emission from distant galaxies and quasars verify that the polarization vectors of these radiations are not randomly oriented as naturally expected. This peculiar phenomenon suggests that the spacetime intervening between the source and observer may be exhibiting some sort of optical activity, the origin of which is not known. In the present paper we provide a plausible explanation to this phenomenon by investigating the r\^ole played by a Chern-Simons-like term in the background of an ordinary or superconducting screwed cosmic string in a scalar-tensor gravity. We discuss the possibility that the excess in polarization of the light from radio-galaxies and quasars can be understood as if the electromagnetic waves emitted by these cosmic objects interact with a scalar-tensor screwed cosmic string through a Chern-Simons coupling. We use current astronomical data to constrain possible values for the coupling constant of this theory, and show that it turns out to be: λ1026\lambda \sim 10^{-26} eV, which is two orders of magnitude larger than in string-inspired theories.Comment: Revised version, to appear in Phys. Rev.

    Cosmological Birefringence: an Astrophysical test of Fundamental Physics

    Full text link
    We review the methods used to test for the existence of cosmological birefringence, i.e. a rotation of the plane of linear polarization for electromagnetic radiation traveling over cosmological distances, which might arise in a number of important contexts involving the violation of fundamental physical principles. The main methods use: (1) the radio polarization of radio galaxies and quasars, (2) the ultraviolet polarization of radio galaxies, and (3) the cosmic microwave background polarization. We discuss the main results obtained so far, the advantages and disadvantages of each method, and future prospects.Comment: To appear in the Proceedings of the JENAM 2010 Symposium "From Varying Couplings to Fundamental Physics", held in Lisbon, 6-10 Sept. 201

    Kalb-Ramond excitations in a thick-brane scenario with dilaton

    Full text link
    We compute the full spectrum and eigenstates of the Kalb-Ramond field in a warped non-compact Randall-Sundrum -type five-dimensional spacetime in which the ordinary four-dimensional braneworld is represented by a sine-Gordon soliton. This 3-brane solution is fully consistent with both the warped gravitational field and bulk dilaton configurations. In such a background we embed a bulk antisymmetric tensor field and obtain, after reduction, an infinite tower of normalizable Kaluza-Klein massive components along with a zero-mode. The low lying mass eigenstates of the Kalb-Ramond field may be related to the axion pseudoscalar. This yields phenomenological implications on the space of parameters, particularly on the dilaton coupling constant. Both analytical and numerical results are given.Comment: 10 pages, 13 figures, and 2 tables. Final version to appear in The European Physical Journal

    Geometrodynamics of Variable-Speed-of-Light Cosmologies

    Get PDF
    This paper is dedicated to the memory of Dennis Sciama. Variable-Speed-of-Light (VSL) cosmologies are currently attracting interest as an alternative to inflation. We investigate the fundamental geometrodynamic aspects of VSL cosmologies and provide several implementations which do not explicitly break Lorentz invariance (no "hard" breaking). These "soft" implementations of Lorentz symmetry breaking provide particularly clean answers to the question "VSL with respect to what?". The class of VSL cosmologies we consider are compatible with both classical Einstein gravity and low-energy particle physics. These models solve the "kinematic" puzzles of cosmology as well as inflation does, but cannot by themselves solve the flatness problem, since in their purest form no violation of the strong energy condition occurs. We also consider a heterotic model (VSL plus inflation) which provides a number of observational implications for the low-redshift universe if chi contributes to the "dark energy" either as CDM or quintessence. These implications include modified gravitational lensing, birefringence, variation of fundamental constants and rotation of the plane of polarization of light from distant sources.Comment: 19 pages, latex 209, revtex 3.1; To appear in Physical Review D; Numerous small changes of presentation and emphasis; new section on the entropy problem; references updated; central results unaffecte

    Rotational Perturbations in Neveu-Schwarz-Neveu-Schwarz String Cosmology

    Get PDF
    First order rotational perturbations of the flat Friedmann-Robertson-Walker (FRW) metric are considered in the framework of four dimensional Neveu-Schwarz-Neveu-Schwarz (NS-NS) string cosmological models coupled with dilaton and axion fields. The decay rate of rotation depends mainly upon the dilaton field potential U. The equation for rotation imposes strong limitations upon the functional form of U, restricting the allowed potentials to two: the trivial case U=0 and a generalized exponential type potential. In these two models the metric rotation function can be obtained in an exact analytic form in both Einstein and string frames. In the potential-free case the decay of rotational perturbations is governed by an arbitrary function of time while in the presence of a potential the rotation tends rapidly to zero in both Einstein and string frames.Comment: 13 pages, 8 figure

    Is there evidence for cosmic anisotropy in the polarization of distant radio sources?

    Get PDF
    Measurements of the polarization angle and orientation of cosmological radio sources may be used to search for unusual effects in the propagation of light through the universe. Recently, Nodland and Ralston (astro-ph/9704196) have claimed to find evidence for a redshift- and direction-dependent rotation effect in existing data. We re-examine these data and argue that there is no statistically significant signal present. We are able to place stringent limits on hypothetical chiral interactions of photons propagating through spacetime.Comment: 17 pages, including 7 figures. (Arithmetic error corrected, fixing value of chi^2

    Rotation of the Universe and the angular momenta of celestial bodies

    Full text link
    We discuss the equation of motion of the rotating homogenous and isotropic model of the Universe. We show that the model predicts the presence of a minimum in the relation between the mass of an astronomical object and its angular momentum. We show that this relation appears to be universal, and we predict the masses of structures with minimal angular momenta in agreement with observations. In such a manner we suggest the possibility at acquirement of angular momenta of celestial bodies during their formation from the global rotation of the Universe.Comment: 10 pages 2 figure

    Optical Activity of a Neutrino Gas

    Get PDF
    For photons that propagate through a gas of neutrinos with a non-zero chemical potential, the left-handed and right-handed polarization modes acquire different dispersion relations. This is due to the CP and CPT-odd terms induced by such a background on the photon self-energy. We present a detailed calculation of this effect, which does not depend on any physical assumptions beyond those of the standard electroweak model. Some possible cosmological and astrophysical implications of our results are considered in several contexts, including the recent discussions regarding the rotation of the plane of polarization of electromagnetic waves over cosmological distances.Comment: latex, axodra
    corecore