321 research outputs found

    The CYP2J2 G-50T polymorphism and myocardial infarction in patients with cardiovascular risk profile

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cytochrome P450 (CYP) enzyme 2J2, an epoxygenase predominantly expressed in the heart, metabolises arachidonic acid to biologically active eicosanoids. One of the CYP2J2 products, 11, 12-epoxyeicosatrienoic acid, has several vasoprotective effects. The CYP2J2-G-50T-promotor polymorphism decreases gene expression and is associated with coronary artery disease. This association supports the vascular protective role of CYP-derived eicosanoids in cardiovascular disease. In the present study, we investigated the influence of this polymorphism on survived myocardial infarction in two study groups of patients with on average high cardiovascular risk profile.</p> <p>Methods</p> <p>The CYP2J2 polymorphism was genotyped in two groups of patients that were collected with the same method of clinical data collection. Data from 512 patients with sleep apnoea (group: OSA) and on average high cardiovascular risk profile and from another 488 patients who were admitted for coronary angiography (CAR-group) were evaluated for a potential correlation of the CYP2J2 polymorphism G-50T and a history of myocardial infarction. The G-50T polymorphism of the CYP2J2 gene was genotyped by allele specific restriction and light cycler analysis.</p> <p>Results</p> <p>The T-allele of the polymorphism was found in 111 (11.1%; CAR-group: N = 65, 13.3%; OSA: N = 46, 9.0%). 146 patients had a history of myocardial infarction (CAR: N = 120, 24.6%; OSA: N = 26, 5.1%). Cardiovascular risk factors were equally distributed between the different genotypes of the CYP2J2 G-50T polymorphism. In the total group of 1000 individuals, carriers of the T-allele had significantly more myocardial infarctions compared to carriers of the wild type (T/T or G/T: 21.6%; G/G: 13.7%; p = 0.026, odds ratio 1.73, 95%-CI [1.06–2.83]). In the multivariate logistic regression analysis the odds ratio for a history of myocardial infarction in carriers of the T-allele was 1.611, 95%-CI [0.957–2.731] but this trend was not significant (p = 0.073).</p> <p>Conclusion</p> <p>In presence of other risk factors, the CYP2J2 G-50T failed to show a significant role in the development of myocardial infarction. However, since our result is close to the border of significance, this question should be clarified in larger, prospective studies in the future.</p

    Effect of sitagliptin on the echocardiographic parameters of left ventricular diastolic function in patients with type 2 diabetes : a subgroup analysis of the PROLOGUE study

    Get PDF
    Background: Diabetes is associated closely with an increased risk of cardiovascular events, including diastolic dysfunction and heart failure that leads to a shortening of life expectancy. It is therefore extremely valuable to evaluate the impact of antidiabetic agents on cardiac function. However, the influence of dipeptidyl peptidase 4 inhibitors on cardiac function is controversial and a major matter of clinical concern. We therefore evaluated the effect of sitagliptin on echocardiographic parameters of diastolic function in patients with type 2 diabetes as a sub-analysis of the PROLOGUE study. Methods: Patients in the PROLOGUE study were assigned randomly to either add-on sitagliptin treatment or conventional antidiabetic treatment. Of the 463 patients in the overall study, 115 patients (55 in the sitagliptin group and 60 in the conventional group) who had complete echocardiographic data of the ratio of peak early diastolic transmitral flow velocity (E) to peak early diastolic mitral annular velocity (eβ€²) at baseline and after 12 and 24 months were included in this study. The primary endpoint of this post hoc sub-analysis was a comparison of the changes in the ratio of E to eβ€² (E/eβ€²) between the two groups from baseline to 24 months. Results: The baseline-adjusted change in E/eβ€² during 24 months was significantly lower in the sitagliptin group than in the conventional group (βˆ’0.18 Β± 0.55 vs. 1.91 Β± 0.53, p = 0.008), irrespective of a higher E/eβ€² value at baseline in the sitagliptin group. In analysis of covariance, sitagliptin treatment was significantly associated with change in E/eβ€² over 24 months (Ξ² = βˆ’9.959, p = 0.001), independent of other clinical variables at baseline such as blood pressure, HbA1c, and medications for diabetes. Changes in other clinical variables including blood pressure and glycemic parameters, and echocardiographic parameters, such as cardiac structure and systolic function, were comparable between the two groups. There was also no significant difference in the serum levels of N-terminal-pro brain natriuretic peptide and high-sensitive C-reactive protein between the two groups during the study period. Conclusions: Adding sitagliptin to conventional antidiabetic regimens in patients with T2DM for 24 months attenuated the annual exacerbation in the echocardiographic parameter of diastolic dysfunction (E/eβ€²) independent of other clinical variables such as blood pressure and glycemic control

    Rationale and design of a multicenter randomized study for evaluating vascular function under uric acid control using the xanthine oxidase inhibitor, febuxostat : the PRIZE study

    Get PDF
    Background: Xanthine oxidase inhibitors are anti-hyperuricemic drugs that decrease serum uric acid levels by inhibiting its synthesis. Xanthine oxidase is also recognized as a pivotal enzyme in the production of oxidative stress. Excess oxidative stress induces endothelial dysfunction and inflammatory reactions in vascular systems, leading to atherosclerosis. Many experimental studies have suggested that xanthine oxidase inhibitors have anti-atherosclerotic effects by decreasing in vitro and in vivo oxidative stress. However, there is only limited evidence on the clinical implications of xanthine oxidase inhibitors on atherosclerotic cardiovascular disease in patients with hyperuricemia. We designed the PRIZE study to evaluate the effects of febuxostat on a surrogate marker of cardiovascular disease risk, ultrasonography-based intima-media thickness of the carotid artery in patients with hyperuricemia. Methods: The study is a multicenter, prospective, randomized, open-label and blinded-endpoint evaluation (PROBE) design. A total of 500 patients with asymptomatic hyperuricemia (uric acid >7.0 mg/dL) and carotid intima-media thickness β‰₯1.1 mm will be randomized centrally to receive either febuxostat (10–60 mg/day) or non-pharmacological treatment. Randomization is carried out using the dynamic allocation method stratified according to age (<65, β‰₯65 year), gender, presence or absence of diabetes mellitus, serum uric acid (<8.0, β‰₯8.0 mg/dL), and carotid intima-media thickness (<1.3, β‰₯1.3 mm). In addition to administering the study drug, we will also direct lifestyle modification in all participants, including advice on control of body weight, sleep, exercise and healthy diet. Carotid intima-media thickness will be evaluated using ultrasonography performed by skilled technicians at a central laboratory. Follow-up will be continued for 24 months. The primary endpoint is percentage change in mean intima-media thickness of the common carotid artery 24 months after baseline, measured by carotid ultrasound imaging. Conclusions: PRIZE will be the first study to provide important data on the effects of febuxostat on atherosclerosis in patients with asymptomatic hyperuricemia

    Sitagliptin and Carotid Atherosclerosis in Type 2 Diabetes

    Get PDF
    Background Experimental studies have suggested that dipeptidyl peptidase-4 (DPP-4) inhibitors provide cardiovascular protective effects. We performed a randomized study to evaluate the effects of sitagliptin added on to the conventional therapy compared with conventional therapy alone (diet, exercise, and/or drugs, except for incretin-related agents) on the intima-media thickness (IMT) of the carotid artery, a surrogate marker for the evaluation of atherosclerotic cardiovascular disease, in people with type 2 diabetes mellitus (T2DM). Methods and Findings We used a multicenter PROBE (prospective, randomized, open label, blinded endpoint) design. Individuals aged β‰₯30 y with T2DM (6.2% ≀ HbA1c < 9.4%) were randomly allocated to receive either sitagliptin (25 to 100 mg/d) or conventional therapy. Carotid ultrasound was performed at participating medical centers, and all parameters were measured in a core laboratory. Of the 463 enrolled participants with T2DM, 442 were included in the primary analysis (sitagliptin group, 222; conventional therapy group, 220). Estimated mean (Β± standard error) common carotid artery IMT at 24 mo of follow-up in the sitagliptin and conventional therapy groups was 0.827 Β± 0.007 mm and 0.837 Β± 0.007 mm, respectively, with a mean difference of βˆ’0.009 mm (97.2% CI βˆ’0.028 to 0.011, p = 0.309). HbA1c level at 24 mo was significantly lower with sitagliptin than with conventional therapy (6.56% Β± 0.05% versus 6.72%Β± 0.05%, p = 0.008; group mean difference βˆ’0.159, 95% CI βˆ’0.278 to βˆ’0.041). Episodes of serious hypoglycemia were recorded only in the conventional therapy group, and the rate of other adverse events was not different between the two groups. As it was not a placebo-controlled trial and carotid IMT was measured as a surrogate marker of atherosclerosis, there were some limitations of interpretation. Conclusions In the PROLOGUE study, there was no evidence that treatment with sitagliptin had an additional effect on the progression of carotid IMT in participants with T2DM beyond that achieved with conventional treatment

    Profile of Lipid and Protein Autacoids in Diabetic Vitreous Correlates With the Progression of Diabetic Retinopathy

    Get PDF
    OBJECTIVE: This study was aimed at obtaining a profile of lipids and proteins with a paracrine function in normal and diabetic vitreous and exploring whether the profile correlates with retinal pathology. RESEARCH DESIGN AND METHODS: Vitreous was recovered from 47 individuals undergoing vitreoretinal surgery: 16 had nonproliferative diabetic retinopathy (NPDR), 15 had proliferative diabetic retinopathy, 7 had retinal detachments, and 9 had epiretinal membranes. Protein and lipid autacoid profiles were determined by protein arrays and mass spectrometry-based lipidomics. RESULTS: Vitreous lipids included lipoxygenase (LO)- and cytochrome P450 epoxygenase (CYP)-derived eicosanoids. The most prominent LO-derived eicosanoid was 5-hydroxyeicosate traenoic acid (HETE), which demonstrated a diabetes-specific increase (P = 0.027) with the highest increase in NPDR vitreous. Vitreous also contained CYP-derived epoxyeicosatrienoic acids; their levels were higher in nondiabetic than diabetic vitreous (P < 0.05). Among inflammatory, angiogenic, and angiostatic cytokines and chemokines, only vascular endothelial growth factor (VEGF) showed a significant diabetes-specific profile (P < 0.05), although a similar trend was noted for tumor necrosis factor (TNF)-alpha. Soluble VEGF receptors R1 and R2 were detected in all samples with lowest VEGF-R2 levels (P < 0.05) and higher ratio of VEGF to its receptors in NPDR and PDR vitreous. CONCLUSIONS: This study is the first to demonstrate diabetes-specific changes in vitreous lipid autacoids including arachidonate and docosahexanoate-derived metabolites indicating an increase in inflammatory versus anti-inflammatory lipid mediators that correlated with increased levels of inflammatory and angiogenic proteins, further supporting the notion that inflammation plays a role the pathogenesis of this disease

    Investigation of utilization of nanosuspension formulation to enhance exposure of 1,3-dicyclohexylurea in rats: Preparation for PK/PD study via subcutaneous route of nanosuspension drug delivery

    Get PDF
    1,3-Dicyclohexylurea (DCU), a potent soluble epoxide hydrolase (sEH) inhibitor has been reported to lower systemic blood pressure in spontaneously hypertensive rats. One limitation of continual administration of DCU for in vivo studies is the compound's poor oral bioavailability. This phenomenon is mainly attributed to its poor dissolution rate and low aqueous solubility. Previously, wet-milled DCU nanosuspension has been reported to enhance the bioavailability of DCU. However, the prosperities and limitations of wet-milled nanosuspension have not been fully evaluated. Furthermore, the oral pharmacokinetics of DCU in rodent are such that the use of DCU to understand PK/PD relationships of sEH inhibitors in preclinical efficacy model is less than ideal. In this study, the limitation of orally delivered DCU nanosuspension was assessed by a surface area sensitive absorption model and pharmacokinetic modeling. It was found that dosing DCU nanosuspension did not provide the desired plasma profile needed for PK/PD investigation. Based on the model and in vivo data, a subcutaneous route of delivery of nanosuspension of DCU was evaluated and demonstrated to be appropriate for future PK/PD studies

    The Epoxygenases CYP2J2 Activates the Nuclear Receptor PPARΞ± In Vitro and In Vivo

    Get PDF
    Peroxisome proliferator-activated receptors (PPARs) are a family of three (PPARalpha, -beta/delta, and -gamma) nuclear receptors. In particular, PPARalpha is involved in regulation of fatty acid metabolism, cell growth and inflammation. PPARalpha mediates the cardiac fasting response, increasing fatty acid metabolism, decreasing glucose utilisation, and is the target for the fibrate lipid-lowering class of drugs. However, little is known regarding the endogenous generation of PPAR ligands. CYP2J2 is a lipid metabolising cytochrome P450, which produces anti-inflammatory mediators, and is considered the major epoxygenase in the human heart.Expression of CYP2J2 in vitro results in an activation of PPAR responses with a particular preference for PPARalpha. The CYP2J2 products 8,9- and 11-12-EET also activate PPARalpha. In vitro, PPARalpha activation by its selective ligand induces the PPARalpha target gene pyruvate dehydrogenase kinase (PDK)4 in cardiac tissue. In vivo, in cardiac-specific CYP2J2 transgenic mice, fasting selectively augments the expression of PDK4.Our results establish that CYP2J2 produces PPARalpha ligands in vitro and in vivo, and suggests that lipid metabolising CYPs are prime candidates for the integration of global lipid changes to transcriptional signalling events

    Variation in the human soluble epoxide hydrolase gene and risk of restenosis after percutaneous coronary intervention

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Restenosis represents the major limiting factor for the long-term efficacy of percutaneous coronary intervention (PCI). Several genetic factors involved in the regulation of the vascular system have been described to play a role in the pathogenesis of restenosis. We investigated whether the <it>EPHX2 K55R </it>polymorphism, previously linked to significantly higher risk for coronary heart disease (CHD), was associated with the occurrence of restenosis after PCI. The association with incident CHD should have been confirmed and a potential correlation of the <it>EPHX2 K55R </it>variant to an increased risk of hypertension was analysed.</p> <p>Methods</p> <p>An overall cohort of 706 patients was studied: This cohort comprised of 435 CHD patients who had undergone successful PCI. Follow-up coronary angiography in all patients was performed 6 months after intervention. Another 271 patients in whom CHD had been excluded by coronary angiography served as controls. From each patient EDTA-blood was drawn at the baseline ward round. Genomic DNA was extracted from these samples and genotyping was performed by real-time PCR and subsequent melting curve analysis.</p> <p>Results</p> <p>In CHD patients 6 month follow-up coronary angiography revealed a restenosis rate of 29.4%, classified as late lumen loss as well as lumen re-narrowing β‰₯ 50%.</p> <p>Statistical analysis showed an equal genotype distribution in restenosis patients and non-restenosis patients (A/A 82.0% and A/G + G/G 18.0% versus A/A 82.1% and A/G + G/G 17.9%). Moreover, neither a significant difference in the genotype distribution of CHD patients and controls nor an association with increased risk of hypertension was found.</p> <p>Conclusion</p> <p>The results of the present study indicate that the <it>EPHX2 K55R </it>polymorphism is not associated with restenosis after PCI, with incidence of CHD, or with an increased risk of hypertension and therefore, can not serve as a predictor for risk of CHD or restenosis after PCI.</p

    Atorvastatin Therapy during the Peri-Infarct Period Attenuates Left Ventricular Dysfunction and Remodeling after Myocardial Infarction

    Get PDF
    Although statins impart a number of cardiovascular benefits, whether statin therapy during the peri-infarct period improves subsequent myocardial structure and function remains unclear. Thus, we evaluated the effects of atorvastatin on cardiac function, remodeling, fibrosis, and apoptosis after myocardial infarction (MI). Two groups of rats were subjected to permanent coronary occlusion. Group II (nβ€Š=β€Š14) received oral atorvastatin (10 mg/kg/d) daily for 3 wk before and 4 wk after MI, while group I (nβ€Š=β€Š12) received equivalent doses of vehicle. Infarct size (Masson's trichrome-stained sections) was similar in both groups. Compared with group I, echocardiographic left ventricular ejection fraction (LVEF) and fractional area change (FAC) were higher while LV end-diastolic volume (LVEDV) and LV end-systolic and end-diastolic diameters (LVESD and LVEDD) were lower in treated rats. Hemodynamically, atorvastatin-treated rats exhibited significantly higher dP/dtmax, end-systolic elastance (Ees), and preload recruitable stroke work (PRSW) and lower LV end-diastolic pressure (LVEDP). Morphometrically, infarct wall thickness was greater in treated rats. The improvement of LV function by atorvastatin was associated with a decrease in hydroxyproline content and in the number of apoptotic cardiomyocyte nuclei. We conclude that atorvastatin therapy during the peri-infarct period significantly improves LV function and limits adverse LV remodeling following MI independent of a reduction in infarct size. These salubrious effects may be due in part to a decrease in myocardial fibrosis and apoptosis

    Let-7b Inhibits Human Cancer Phenotype by Targeting Cytochrome P450 Epoxygenase 2J2

    Get PDF
    BACKGROUND: MicroRNAs (miRNAs) are small, noncoding RNA molecules of 20 to 22 nucleotides that regulate gene expression by binding to their 3' untranslated region (3'UTR). Increasing data implicate altered miRNA participation in the progress of cancer. We previously reported that CYP2J2 epoxygenase promotes human cancer phenotypes. But whether and how CYP2J2 is regulated by miRNA is not understood. METHODS AND RESULTS: Using bioinformatics analysis, we found potential target sites for miRNA let-7b in 3'UTR of human CYP2J2. Luciferase and western blot assays revealed that CYP2J2 was regulated by let-7b. In addition, let-7b decreased the enzymatic activity of endogenous CYP2J2. Furthermore, let-7b may diminish cell proliferation and promote cell apoptosis of tumor cells via posttranscriptional repression of CYP2J2. Tumor xenografts were induced in nude mice by subcutaneous injection of MDA-MB-435 cells. The let-7b expression vector, pSilencer-let-7b, was injected through tail vein every 3 weeks. Let-7b significantly inhibited the tumor phenotype by targeting CYP2J2. Moreover, quantitative real-time polymerase chain reaction and western blotting were used to determine the expression levels of let-7b and CYP2J2 protein from 18 matched lung squamous cell cancer and adjacent normal lung tissues; the expression level of CYP2J2 was inversely proportional to that of let-7b. CONCLUSIONS: Our results demonstrated that the decreased expression of let-7b could lead to the high expression of CYP2J2 protein in cancerous tissues. These findings suggest that miRNA let-7b reduces CYP2J2 expression, which may contribute to inhibiting tumor phenotypes
    • …
    corecore