24 research outputs found

    Thermal Dihydrogen Elimination from Cp*2Yb(4,5-Diazafluorene)

    No full text

    Electron transfer in tetramethylbiphosphinine complexes of Cp* 2 Yb and Cp* 2 Sm

    No full text
    International audienc

    Ligand assisted cleavage of uranium oxo-clusters

    No full text
    Dibenzoylmethanate replaces the bridging triflate ligands in uranium triflate polyoxo-clusters and cleaves the U12O20 core yielding the new [U6O4(OH)4(η-dbm) 12] dibenzoylmethanate (dbm-) cluster which slowly dissociates into a monomeric complex. This reactivity demonstrates the importance of bridging ligands in stabilizing uranium polyoxo-clusters. © 2010 The Royal Society of Chemistry

    Water Stability and Luminescence of Lanthanide Complexes of Tripodal Ligands Derived from 1,4,7-Triazacyclononane: Pyridinecarboxamide versus Pyridinecarboxylate Donors

    No full text
    A series of europium(III) and terbium(III) complexes of three 1,4,7-triazacyclononane-based pyridine containing ligands were synthesized. The three ligands differ from each other in the substitution of the pyridine pendant arm, namely they have a carboxylic acid, an ethylamide, or an ethyl ester substituent, i.e., these ligands are 6,6′,6″-[1,4,7-triazacyclononane-1,4,7-triyltris(methylene)]tris[pyridine-2-carboxylic acid] (H3tpatcn), -tris[pyridine-2-carboxamide] (tpatcnam), and -tris[pyridine-2-carboxylic acid] triethyl ester (tpatcnes) respectively. The quantum yields of both the europium(III) and terbium(III) emission, upon ligand excitation, were highly dependent upon ligand substitution, with a ca. 50-fold decrease for the carboxamide derivative in comparison to the picolinic acid (=pyridine-2-carboxylic acid) based ligand. Detailed analysis of the radiative rate constants and the energy of the triplet states for the three ligand systems revealed a less efficient energy transfer for the carboxamide-based systems. The stability of the three ligand systems in H2O was investigated. Although hydrolysis of the ethyl ester occurred in H2O for the [Ln(tpatcnes)](OTf)3 complexes, the tripositive [Ln(tpatcnam)](OTf)3 complexes and the neutral [Ln(tpatcn)] complexes showed high stability in H2O which makes them suitable for application in biological media. The [Tb(tpatcn)] complex formed easily in H2O and was thermodynamically stable at physiological pH (pTb 14.9), whereas the [Ln(tpatcnam)](OTf)3 complexes showed a very high kinetic stability in H2O, and once prepared in organic solvents, remained undissociated in H2O

    CO reductive oligomerization by a divalent thulium complex and CO2-induced functionalization

    No full text
    International audienceThe divalent thulium complex [Tm(Cp-ttt)(2)] (Cp-ttt = 1,2,4-tris(tert-butyl)cyclopentadienyl) reacts with CO to afford selective CO reductive dimerization and trimerization into ethynediolate (C-2) and ketenecarboxylate (C-3) complexes, respectively. DFT calculations were performed to shed light on the elementary steps of CO homologation and support a stepwise chain growth. The attempted decoordination of the ethynediolate fragment by treatment with Me3SiI led to dimerization and rearrangement into a 3,4-dihydroxyfuran-2-one complex. Investigation of the reactivity of the C-2 and C-3 complexes towards other electrophiles led to unusual functionalization reactions: while the reaction of the ketenecarboxylate C-3 complex with electrophiles yielded new multicarbon oxygenated complexes, the addition of CO2 to the ethynediolate C-2 complex resulted in the formation of a very reactive intermediate, allowing C-H activation of aromatic solvents. This original intermolecular reactivity corresponds to an unprecedented functionalization of CO-derived ligands, which is induced by CO2

    CO Reductive Oligomerization by a Divalent Thulium Complex and CO2-Induced Functionalization

    No full text
    To date, only a very limited number of complexes based on low-valent main group or f-block elements have allowed the reductive coupling of CO molecules to afford multicarbon oxygenates. Herein, we described the reactivity of the divalent thulium complex [Tm(Cpttt)2] (Cpttt = 1,2,4-tris(tert-butyl)cyclopentadienyl) towards CO, leading to selective CO reductive dimerization and trimerization into ethynediolate (C2) and ketenecarboxylate (C3) complexes, respectively. Quantum chemical (DFT) calculations were performed to shed light on the elementary steps of CO homologation and support a stepwise chain growth from the C2 to the C3 product upon addition of extra CO. The attempted decoordination of the ethynediolate frag-ment by treatment with Me3SiI led to dimerization and rearrangement into a 3,4-dihydroxyfuran-2-one complex. Investiga-tion of the reactivity of the C2 and C3 complexes towards other electrophiles led to unusual functionalization reactions: while the reaction of the ketenecarboxylate C3 complex with electrophiles yielded new multicarbon oxygenated complexes, the addition of CO2 to the ethynediolate C2 complex resulted in the formation of a very reactive intermediate, allowing C–H activation of the toluene solvent. This original intermolecular reactivity corresponds to an unprecedented functionalization of CO-derived ligands, which is induced by CO2
    corecore