8 research outputs found

    Biomimetic coatings enhance tribocorrosion behavior and cell responses of commercially pure titanium surfaces

    Get PDF
    CAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIORFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOBiofunctionalized surfaces for implants are currently receiving much attention in the health care sector. Our aims were ( 1) to create bioactive Ti-coatings doped with Ca, P, Si, and Ag produced by microarc oxidation ( MAO) to improve the surface properties of biomedical implants, ( 2) to investigate the TiO2 layer stability under wear and corrosion, and ( 3) to evaluate human mesenchymal stem cells ( hMSCs) responses cultured on the modified surfaces. Tribocorrosion and cell experiments were performed following the MAO treatment. Samples were divided as a function of different Ca/P concentrations and treatment duration. Higher Ca concentration produced larger porous and harder coatings compared to the untreated group ( p<0.001), due to the presence of rutile structure. Free potentials experiments showed lower drops ( 0.6 V) and higher coating lifetime during sliding for higher Ca concentration, whereas lower concentrations presented similar drops ( 0.8 V) compared to an untreated group wherein the drop occurred immediately after the sliding started. MAO-treated surfaces improved the matrix formation and osteogenic gene expression levels of hMSCs. Higher Ca/P ratios and the addition of Ag nanoparticles into the oxide layer presented better surface properties, tribocorrosive behavior, and cell responses. MAO is a promising technique to enhance the biological, chemical, and mechanical properties of dental implant surfaces. (C) 2016 American Vacuum Society.Biofunctionalized surfaces for implants are currently receiving much attention in the health care sector. Our aims were ( 1) to create bioactive Ti-coatings doped with Ca, P, Si, and Ag produced by microarc oxidation ( MAO) to improve the surface properties of biomedical implants, ( 2) to investigate the TiO2 layer stability under wear and corrosion, and ( 3) to evaluate human mesenchymal stem cells ( hMSCs) responses cultured on the modified surfaces. Tribocorrosion and cell experiments were performed following the MAO treatment. Samples were divided as a function of different Ca/P concentrations and treatment duration. Higher Ca concentration produced larger porous and harder coatings compared to the untreated group ( p<0.001), due to the presence of rutile structure. Free potentials experiments showed lower drops ( 0.6 V) and higher coating lifetime during sliding for higher Ca concentration, whereas lower concentrations presented similar drops ( 0.8 V) compared to an untreated group wherein the drop occurred immediately after the sliding started. MAO-treated surfaces improved the matrix formation and osteogenic gene expression levels of hMSCs. Higher Ca/P ratios and the addition of Ag nanoparticles into the oxide layer presented better surface properties, tribocorrosive behavior, and cell responses. MAO is a promising technique to enhance the biological, chemical, and mechanical properties of dental implant surfaces.113114CAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIORFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIORFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO11838-13-22013/08451-1The authors would like to thank the University of Illinois at Chicago for providing the facilities to perform this study, Rush University Medical Center on behalf of R. Urban for the SEM facility, Denise Carleto Andia for providing the human bone marrow stromal cells for some cell experiments, Rafael Parra from Univ Estadual Paulista (Sorocaba, Brazil) for his contribution and support in the Plasma Technology Laboratory, the Coordination for the Improvement of Higher Level Personnel (CAPES) from Brazil for the doctoral fellowship of the first author (PDSE Proc. 11838-13-2), the State of Sao Paulo Research Foundation (FAPESP) for Grant No. 2013/08451-1, the National Science Foundation (NSF) for Grant No. 1067424, and finally financial support from NIH R03 AR064005

    Tailoring the synthesis of tantalum-based thin films for biomedical application: Characterization and biological response

    No full text
    The aim of this study was to tailor the deposition parameters of magnetron sputtering to synthetize tantalum oxide (TaxOy) films onto commercially pure titanium (cpTi) surface. The structural and optical properties, morphology, roughness, elemental chemical composition and surface energy were assessed. The impact of TaxOy films on initial Streptococcus sanguinis adhesion was investigated. The morphology and spreading of pre-osteoblastic (MC3T3-E1) cells on a crystalline tantalum oxide film were evaluated. TaxOy films with estimated thickness of 600 nm and different structures (amorphous or crystalline) were produced depending on the various oxygen flow rates and parameters used. X-ray diffraction analysis revealed that the 8 O-2 sccm (600 degrees C/400 W) group showed crystallization corresponding to the beta-TaxO5 phase. Optical analysis showed that the 4 O-2 sccm (200 degrees C 300 W) to 8 O-2 sccm (600 degrees C 300 W) groups and 10 O-2 sccm (200 degrees C 300 W) group presented regular and large-amplitude interference oscillations, suggesting high optical homogeneity of the films. The crystalline beta-TaxO5 coating showed higher roughness and surface energy values than the other groups (P .05). By tailoring the deposition parameters, we synthetized a crystalline beta-TaxO5 coating that improved titanium surface properties and positively affected cell spreading and morphology, making it a promising surface treatment for titanium-based implants101111119COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPsem informação2016/07269-3; 2016/11470-6; 2017/18916-

    Secretome profiling of periodontal ligament from deciduous and permanent teeth reveals a distinct expression pattern of laminin chains

    No full text
    It has been suggested that there are histological and functional distinctions between the periodontal ligament (PDL) of deciduous (DecPDL) and permanent (PermPDL) teeth. Thus, we hypothesized that DecPDL and PermPDL display differences in the constitutive expression of genes/proteins involved with PDL homeostasis. Primary PDL cell cultures were obtained for DecPDL (n = 3) and PermPDL (n = 3) to allow us to perform label-free quantitative secretome analysis. Although a highly similar profile was found between DecPDL and PermPDL cells, comparative secretome analysis evidenced that one of the most stickling differences involved cell adhesion molecules, including laminin subunit gamma 1 (LAMC1) and beta 2 (LAMB2). Next, total RNA and protein extracts were obtained from fresh PDL tissues of deciduous (n = 6) and permanent (n = 6) teeth, and Western blotting and qPCR analysis were used to validate our in vitro findings. Western blot analysis confirmed that LAMC1 was increased in DecPDL fresh tissues (p< 0.05). Furthermore, qPCR data analysis revealed that mRNA levels for laminin subunit beta 1 (LAMB1), beta 3 (LAMB3), LAMC1, and gamma 2 (LAMC2) were higher in DecPDL fresh tissues, whereas transcripts for LAMB2 were increased in PermPDL (p< 0.05). In conclusion, the differential expression of laminin chains in DecPDL and PermPDL suggests an involvement of laminin-dependent pathways in the control of physiological differences between them11

    Loss of discoidin domain receptor 1 predisposes mice to periodontal breakdown

    No full text
    The discoidin domain receptors, DDR1 and DDR2, are nonintegrin collagen receptors and tyrosine kinases. DDRs regulate cell functions, and their extracellular domains affect collagen fibrillogenesis and mineralization. Based on the collagenous nature of dentoalveolar tissues, we hypothesized that DDR1 plays an important role in dentoalveolar development and function. Radiography, micro-computed tomography (micro-CT), histology, histomorphometry, in situ hybridization (ISH), immunohistochemistry (IHC), and transmission electron microscopy (TEM) were used to analyze Ddr1 knockout (Ddr1(-/-)) mice and wild-type (WT) controls at 1, 2, and 9 mo, and ISH and quantitative polymerase chain reaction (qPCR) were employed to assess Ddr1/DDR1 messenger RNA expression in mouse and human tissues. Radiographic images showed normal molars but abnormal mandibular condyles, as well as alveolar bone loss in Ddr1(-/-) mice versus WT controls at 9 mo. Histological, histomorphometric, micro-CT, and TEM analyses indicated no differences in enamel or dentin Ddr1(-/-) versus WT molars. Total volumes (TVs) and bone volumes (BVs) of subchondral and ramus bone of Ddr1(-/-) versus WT condyles were increased and bone volume fraction (BV/TV) was reduced at 1 and 9 mo. There were no differences in alveolar bone volume at 1 mo, but at 9 mo, severe periodontal defects and significant alveolar bone loss (14%; P < 0.0001) were evident in Ddr1(-/-) versus WT mandibles. Histology, ISH, and IHC revealed disrupted junctional epithelium, connective tissue destruction, bacterial invasion, increased neutrophil infiltration, upregulation of cytokines including macrophage colony-stimulating factor, and 3-fold increased osteoclast numbers (P < 0.05) in Ddr1(-/-) versus WT periodontia at 9 mo. In normal mouse tissues, ISH and qPCR revealed Ddr1 expression in basal cell layers of the oral epithelia and in immune cells. We confirmed a similar expression pattern in human oral epithelium by ISH and qPCR. We propose that DDR1 plays an important role in periodontal homeostasis and that absence of DDR1 predisposes mice to periodontal breakdown98131521153
    corecore