298 research outputs found

    Charge-Transfer Dynamics at the α/β Subunit Interface of a Photochemical Ribonucleotide Reductase

    Get PDF
    United States. National Institutes of Health (GM 29595

    Reversible, Long-Range Radical Transfer in E. coli Class Ia Ribonucleotide Reductase

    Get PDF
    Ribonucleotide reductases (RNRs) catalyze the conversion of nucleotides (NDPs or NTPs where N = C, U, G, or A) to 2′-deoxynucleotides (dNDPs or dNTPs)[superscript 1] and are responsible for controlling the relative ratios and absolute concentrations of cellular dNTP pools. For this reason, RNRs play a major role in ensuring the fidelity of DNA replication and repair. RNRs are found in all organisms and are classified based on the metallocofactor used to initiate catalysis,[superscript 1] with the class Ia RNRs requiring a diferric-tyrosyl radical (Y•) cofactor.National Institutes of Health (U.S.) (GM47274)National Institutes of Health (U.S.) (GM29595

    Photochemical tyrosine oxidation with a hydrogen-bonded proton acceptor by bidirectional proton-coupled electron transfer

    Get PDF
    Amino acid radical generation and transport are fundamentally important to numerous essential biological processes to which small molecule models lend valuable mechanistic insights. Pyridyl-amino acid-methyl esters are appended to a rhenium(I) tricarbonyl 1,10-phenanthroline core to yield rhenium–amino acid complexes with tyrosine ([Re]–Y–OH) and phenylalanine ([Re]–F). The emission from the [Re] center is more significantly quenched for [Re]–Y–OH upon addition of base. Time-resolved studies establish that excited-state quenching occurs by a combination of static and dynamic mechanisms. The degree of quenching depends on the strength of the base, consistent with a proton-coupled electron transfer (PCET) quenching mechanism. Comparative studies of [Re]–Y–OH and [Re]–F enable a detailed mechanistic analysis of a bidirectional PCET process.National Institutes of Health (U.S.) (GM47274

    Ten-percent solar-to-fuel conversion with nonprecious materials

    Get PDF
    Direct solar-to-fuels conversion can be achieved by coupling a photovoltaic device with water-splitting catalysts. We demonstrate that a solar-to-fuels efficiency (SFE) > 10% can be achieved with nonprecious, low-cost, and commercially ready materials. We present a systems design of a modular photovoltaic (PV)–electrochemical device comprising a crystalline silicon PV minimodule and low-cost hydrogen-evolution reaction and oxygen-evolution reaction catalysts, without power electronics. This approach allows for facile optimization en route to addressing lower-cost devices relying on crystalline silicon at high SFEs for direct solar-to-fuels conversion.National Science Foundation (U.S.). Faculty Early Career Development Program (ECCS-1150878)Singapore. National Research Foundation (Singapore-MIT Alliance for Research and Technology. Low Energy Electronic Systems Research Program)Chesonis Family Foundatio

    Modulation of Phenol Oxidation in Cofacial Dyads

    Get PDF
    The presentation of two phenols on a xanthene backbone is akin to the tyrosine dyad (Y[subscript 730] and Y[subscript 731]) of ribonucleotide reductase. X-ray crystallography reveals that the two phenol moieties are cofacially disposed at 4.35 Ã…. Cyclic voltammetry reveals that phenol oxidation is modulated within the dyad, which exhibits a splitting of one-electron waves with the second oxidation of the phenol dyad occurring at larger positive potential than that of a typical phenol. In contrast, a single phenol appended to a xanthene exhibits a two-electron process, consistent with reported oxidation pathways of phenols in acetonitrile. The perturbation of the phenol potential by stacking is reminiscent of a similar effect for guanines stacked within DNA base pairs.National Institutes of Health (U.S.) (GM5R01
    • …
    corecore