88 research outputs found

    Measurement-free topological protection using dissipative feedback

    Full text link
    Protecting quantum information from decoherence due to environmental noise is vital for fault-tolerant quantum computation. To this end, standard quantum error correction employs parallel projective measurements of individual particles, which makes the system extremely complicated. Here we propose measurement-free topological protection in two dimension without any selective addressing of individual particles. We make use of engineered dissipative dynamics and feedback operations to reduce the entropy generated by decoherence in such a way that quantum information is topologically protected. We calculate an error threshold, below which quantum information is protected, without assuming selective addressing, projective measurements, nor instantaneous classical processing. All physical operations are local and translationally invariant, and no parallel projective measurement is required, which implies high scalability. Furthermore, since the engineered dissipative dynamics we utilized has been well studied in quantum simulation, the proposed scheme can be a promising route progressing from quantum simulation to fault-tolerant quantum information processing.Comment: 17pages, 6 figure

    Recurrent Outbursts and Jet Ejections Expected in Swift J1644+57: Limit-Cycle Activities in a Supermassive Black Hole

    Full text link
    The tidal disruption event by a supermassive black hole in Swift J1644+57 can trigger limit-cycle oscillations between a supercritically accreting X-ray bright state and a subcritically accreting X-ray dim state. Time evolution of the debris gas around a black hole with mass M=10^{6} {\MO} is studied by performing axisymmetric, two-dimensional radiation hydrodynamic simulations. We assumed the α\alpha-prescription of viscosity, in which the viscous stress is proportional to the total pressure. The mass supply rate from the outer boundary is assumed to be M˙supply=100LEdd/c2{\dot M}_{\rm supply}=100L_{\rm Edd}/c^2, where LEddL_{\rm Edd} is the Eddington luminosity, and cc is the light speed. Since the mass accretion rate decreases inward by outflows driven by radiation pressure, the state transition from a supercritically accreting slim disk state to a subcritically accreting Shakura-Sunyaev disk starts from the inner disk and propagates outward in a timescale of a day. The sudden drop of the X-ray flux observed in Swift J1644+57 in August 2012 can be explained by this transition. As long as M˙supply{\dot M}_{\rm supply} exceeds the threshold for the existence of a radiation pressure dominant disk, accumulation of the accreting gas in the subcritically accreting region triggers the transition from a gas pressure dominant Shakura-Sunyaev disk to a slim disk. This transition takes place at t∼ 50/(α/0.1)t {\sim}~50/({\alpha}/0.1) days after the X-ray darkening. We expect that if α>0.01\alpha > 0.01, X-ray emission with luminosity ≳1044\gtrsim 10^{44} erg⋅s−1{\rm erg}{\cdot}{\rm s}^{-1} and jet ejection will revive in Swift J1644+57 in 2013--2014.Comment: 6 pages, 4 figures, accepted for publication in PASJ Letter

    X-ray and Optical Monitoring of State Transitions in MAXI J1820+070

    Get PDF
    We report results from the X-ray and optical monitoring of the black hole candidate MAXI J1820+070 (=ASSASN-18ey) over the entire period of its outburst from March to October 2018.In this outburst, the source exhibited two sets of `fast rise and slow decay'-type long-term flux variations. We found that the 1--100 keV luminosities at two peaks were almost the same, although a significant spectral softening was only seen in the second flux rise. This confirms that the state transition from the low/hard state to the high/soft state is not determined by the mass accretion rate alone. The X-ray spectrum was reproduced with the disk blackbody emission and its Comptonization, and the long-term spectral variations seen in this outburst were consistent with a disk truncation model. The Comptonization component, with a photon index of 1.5-1.9 and electron temperature of ~>40 keV, was dominant during the low/hard state periods, and its contribution rapidly decreased (increased) during the spectral softening (hardening). During the high/soft state period, in which the X-ray spectrum became dominated by the disk blackbody component, the inner disk radius was almost constant, suggesting that the standard disk was present down to the inner most stable circular orbit. The long-term evolution of optical and X-ray luminosities and their correlation suggest that the jets substantially contributed to the optical emission in the low/hard state, while they are quenched and the outer disk emission dominated the optical flux in the intermediate state and the high/soft state.Comment: 12 pages, 7 figures, ApJ in pres

    Combined Spectral and Timing Analysis of the Black Hole Candidate MAXI J1659-152 Discovered by MAXI and Swift

    Get PDF
    We report on X-ray spectral and timing results of the new black hole candidate (BHC) MAXI J1659-152 with the orbital period of 2.41 hours (shortest among BHCs) in the 2010 outburst from 65 Rossi X-ray Timing Explorer (RXTE) observations and 8 simultaneous Swift and RXTE observations. According to the definitions of the spectral states in Remillard & McClintock (2006), most of the observations have been classified into the intermediate state. All the X-ray broadband spectra can be modeled by a multi-color disk plus a power-law with an exponential cutoff or a multi-color disk plus a Comptonization component. During the initial phase of the outburst, a high energy cutoff was visible at 30-40 keV. The innermost radius of the disk gradually decreased by a factor of more than 3 from the onset of the outburst and reached a constant value of 35 d_10 cos i^-1/2 km, where d_10 is the distance in units of 10 kpc and ii is the inclination. The type-C quasi-periodic oscillation (QPO) frequency varied from 1.6 Hz to 7.3 Hz in association with a change of the innermost radius, while the innermost radius remained constant during the type-B QPO detections at 1.6-4.1 Hz. Hence, we suggest that the origin of the type-B QPOs is different from that of type-C QPOs, the latter of which would originate from the disk truncation radius. Assuming the constant innermost radius in the latter phase of the outburst as the innermost stable circular orbit, the black hole mass in MAXI J1659-152 is estimated to be 3.6-8.0 M_solar for a distance of 5.3-8.6 kpc and an inclination angle of 60-75 degrees.Comment: 27 pages, 14 figures, accepted for publication in PAS
    • …
    corecore