18 research outputs found

    Regulation of Adrenomedullin and its Family Peptide by RAMP System – Lessons from Genetically Engineered Mice

    Get PDF
    Adrenomedullin (ADM), originally identified as a vasodilating peptide, is now recognized to be a pleiotropic molecule involved in both the pathogenesis of cardiovascular diseases and circulatory homeostasis. Homozygotes of ADM knockout mice (ADM-/-) were lethal at mid-gestation with abnormalities of vascular development and this finding clarified the angiogenic potency of ADM. Calcitonin gene-related peptide (CGRP), which has a structure and function similar to that of ADM, has been identified as a family peptide of ADM. Unlike ADM-/-, CGRP-/- were apparently normal. Therefore, the study of knockout mice first clarified the distinctly different physiological roles between ADM and CGRP. In contrast, heterozygotes of ADM knockout mice (ADM+/-) were alive but showed blood pressure elevation, reduced neovascularization, and enhanced neointimal formation by arterial injury. Based on these observations, there was hope ADM would have a therapeutic use. However, ADM has a short half-life in the blood stream and its application in chronic disease has limitations. Therefore, we focused on the ADM receptor system. The calcitonin-receptor-like receptor (CLR), which is the ADM receptor, associates with one of the accessory proteins, called receptor activity-modifying proteins (RAMPs). By interacting with RAMP1, CLR exhibits a high affinity for CGRP, whereas by interacting with either RAMP2 or -3, CLR exhibits a high affinity for ADM. We generated RAMP knockout mice and found that vascular phenotypes similar to ADM-/- were reproduced only in RAMP2-/-. This shows that RAMP2 is the key determinant of the vascular functions of ADM. RAMP2 could be an attractive therapeutic target in cardiovascular diseases.ArticleCURRENT PROTEIN & PEPTIDE SCIENCE. 14(5):347-357 (2013)journal articl

    Regulation of Adrenomedullin and its Family Peptide by RAMP System - Lessons from Genetically Engineered Mice

    Get PDF
    Adrenomedullin (ADM), originally identified as a vasodilating peptide, is now recognized to be a pleiotropic molecule involved in both the pathogenesis of cardiovascular diseases and circulatory homeostasis. Homozygotes of ADM knockout mice (ADM-/-) were lethal at mid-gestation with abnormalities of vascular development and this finding clarified the angiogenic potency of ADM. Calcitonin gene-related peptide (CGRP), which has a structure and function similar to that of ADM, has been identified as a family peptide of ADM. Unlike ADM-/-, CGRP-/- were apparently normal. Therefore, the study of knockout mice first clarified the distinctly different physiological roles between ADM and CGRP. In contrast, heterozygotes of ADM knockout mice (ADM+/-) were alive but showed blood pressure elevation, reduced neovascularization, and enhanced neointimal formation by arterial injury. Based on these observations, there was hope ADM would have a therapeutic use. However, ADM has a short half-life in the blood stream and its application in chronic disease has limitations. Therefore, we focused on the ADM receptor system. The calcitonin-receptor-like receptor (CLR), which is the ADM receptor, associates with one of the accessory proteins, called receptor activity-modifying proteins (RAMPs). By interacting with RAMP1, CLR exhibits a high affinity for CGRP, whereas by interacting with either RAMP2 or -3, CLR exhibits a high affinity for ADM. We generated RAMP knockout mice and found that vascular phenotypes similar to ADM-/- were reproduced only in RAMP2-/-. This shows that RAMP2 is the key determinant of the vascular functions of ADM. RAMP2 could be an attractive therapeutic target in cardiovascular diseases.ArticleCURRENT PROTEIN & PEPTIDE SCIENCE. 14(5):347-357 (2013)journal articl

    Adrenomedullin in sinusoidal endothelial cells play protective roles against cold injury of liver

    Get PDF
    Donor organ damage caused by cold preservation is a major problem affecting liver transplantation. Cold preservation most easily damages liver sinusoidal endothelial cells (LSECs), and information about the molecules modulating LSECs function can provide the basis for new therapeutic strategies. Adrenomedullin (AM) is a peptide known to possess anti-apoptotic and anti-inflammatory properties. AM is abundant in vascular endothelial cells, but levels are comparatively low in liver, and little is known about its function there. In this study, we demonstrated both AM and its receptors are expressed in LSECs. AM treatment reduced LSECs loss and apoptosis under cold treatment. AM also downregulated cold-induced expression of TNF alpha, IL1 beta, IL6, ICAM1 and VCAM1. AM reduced apoptosis and expression of ICAM1 and VCAM1 in an in vivo liver model subjected to cold storage. Conversely, apoptosis was exacerbated in livers from AM and RAMP2 (AM receptor activity-modifying protein) knockout mice. These results suggest that AM expressed in LSECs exerts a protective effect against cold-organ damage through modulation of apoptosis and inflammation.ArticlePEPTIDES. 31(5):865-871 (2010)journal articl

    The Tokyo Oldest Old Survey on Total Health (TOOTH): A longitudinal cohort study of multidimensional components of health and well-being

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>With the rapid worldwide increase in the oldest old population, considerable concern has arisen about the social and economic burden of diseases and disability in this age group. Understanding of multidimensional structure of health and its life-course trajectory is an essential prerequisite for effective health care delivery. Therefore, we organized an interdisciplinary research team consisting of geriatricians, dentists, psychologists, sociologists, and epidemiologists to conduct a longitudinal observational study.</p> <p>Methods/Design</p> <p>For the Tokyo Oldest Old Survey on Total Health (TOOTH) study, a random sample of inhabitants of the city of Tokyo, aged 85 years or older, was drawn from the basic city registry. The baseline comprehensive assessment consists of an in-home interview, a self-administered questionnaire, and a medical/dental examination. To perform a wide variety of biomedical measurements, including carotid ultrasonography and a detailed dental examination, participants were invited to our study center at Keio University Hospital. For those who were not able to visit the study center, we provided the option of a home-based examination, in which participants were simultaneously visited by a geriatrician and a dentist. Of 2875 eligible individuals, a total of 1152 people were recruited, of which 542 completed both the in-home interview and the medical/dental examination, with 442 completed the in-home interview only, and another 168 completed self or proxy-administered data collection only. Carotid ultrasonography was completed in 458 subjects, which was 99.6% of the clinic visitors (n = 460). Masticatory assessment using a colour-changeable chewing gum was completed in 421 subjects, a 91.5% of the clinic visitors.</p> <p>Discussion</p> <p>Our results demonstrated the feasibility of a new comprehensive study that incorporated non-invasive measurements of subclinical diseases and a detailed dental examination aiming at community-dwelling individuals aged 85 years or older. The bimodal recruitment strategy is critically important to capture a broad range of health profiles among the oldest old. Results form the TOOTH study will help develop new models of health promotion, which are expected to contribute to an improvement in lifelong health and well-being.</p> <p>Trial Registration</p> <p>This study has been registered in the UMIN-Clinical Trial Registry (CTR), ID: UMIN000001842.</p

    Induction of LYVE-1/stabilin-2-positive liver sinusoidal endothelial-like cells from embryoid bodies by modulation of adrenomedullin-RAMP2 signaling

    Get PDF
    Embryonic stem cells (ESCs) are a useful source for various cell lineages. So far, however, progress toward reconstitution of mature liver morphology and function has been limited. We have shown that knockout mice deficient in adrenomedullin (AM), a multifunctional endogenous peptide, or its receptor-activity modifying protein (RAMP2) die in utero due to poor vascular development and hemorrhage within the liver. In this study, using embryoid bodies (EBs)-culture system, we successfully induced liver sinusoidal endothelial-like cells by modulation of AM-RAMP2. In an EB differentiation system, we found that co-administration of AM and SB431542, an inhibitor of transforming growth factor beta (TGF beta) receptor type 1, markedly enhanced differentiation of lymphatic vessel endothelial hyaluronan receptor-1 (LYVE-1)/stabilin-2-positive endothelial cells. These cells showed robust endocytosis of acetylated low-density lipoprotein (Ac-LDL) and upregulated expression of liver sinusoidal endothelial cells (LSECs)-specific markers, including factor 8 (F8), Fc-gamma receptor 2b (Fcgr2b), and mannose receptor C type 1 (Mrc1), and also possessed fenestrae-like structure, a key morphological feature of LSECs. In RAMP2-null liver, by contrast, LYVE-1 was downregulated in LSECs, and the sinusoidal structure was disrupted. Our findings highlight the importance of AM-RAMP2 signaling for development of LSECs. (C) 2011 Elsevier Inc. All rights reserved.ArticlePEPTIDES. 32(9):1855-1865 (2011)journal articl

    Vascular Endothelial Adrenomedullin-RAMP2 System Is Essential for Vascular Integrity and Organ Homeostasis

    Get PDF
    信州大学博士(医学)・学位論文・平成25年3月31日授与(甲第935号)・小山 晃英Background-Revealing the mechanisms underlying the functional integrity of the vascular system could make available novel therapeutic approaches. We previously showed that knocking out the widely expressed peptide adrenomedullin (AM) or receptor activity-modifying protein 2 (RAMP2), an AM-receptor accessory protein, causes vascular abnormalities and is embryonically lethal. Our aim was to investigate the function of the vascular AM-RAMP2 system directly. Methods and Results-We generated endothelial cell-specific RAMP2 and AM knockout mice (E-RAMP2(-/-) and E-AM(-/-)). Most E-RAMP2(-/-) mice died perinatally. In surviving adults, vasculitis occurred spontaneously. With aging, E-RAMP2(-/-) mice showed severe organ fibrosis with marked oxidative stress and accelerated vascular senescence. Later, liver cirrhosis, cardiac fibrosis, and hydronephrosis developed. We next used a line of drug-inducible E-RAMP2(-/-) mice (DI-E-RAMP2(-/-)) to induce RAMP2 deletion in adults, which enabled us to analyze the initial causes of the aforementioned vascular and organ damage. Early after the induction, pronounced edema with enhanced vascular leakage occurred. In vitro analysis revealed the vascular leakage to be caused by actin disarrangement and detachment of endothelial cells. We found that the AM-RAMP2 system regulates the Rac1-GTP/RhoA-GTP ratio and cortical actin formation and that a defect in this system causes the disruption of actin formation, leading to vascular and organ damage at the chronic stage after the gene deletion. Conclusions-Our findings show that the AM-RAMP2 system is a key determinant of vascular integrity and homeostasis from prenatal stages through adulthood. Furthermore, our models demonstrate how endothelial cells regulate vascular integrity and how their dysregulation leads to organ damage. (Circulation. 2013;127:842-853.)ArticleCIRCULATION. 127(7):842-853 (2013)journal articl

    Placental extract ameliorates non-alcoholic steatohepatitis (NASH) by exerting protective effects on endothelial cells

    No full text
    Non-alcoholic steatohepatitis (NASH) is a severe form of fatty liver disease that is defined by the presence of inflammation and fibrosis, ultimately leading to cirrhosis and hepatocellular carcinoma. Treatment with human placental extract (HPE) reportedly ameliorates the hepatic injury. We evaluated the effect of HPE treatment in a mouse model of NASH. In the methione- and choline-deficient (MCD) diet-induced liver injury model, fibrosis started from regions adjacent to the sinusoids. We administered the MCD diet with high-salt loading (8% NaCl in the drinking water) to mice deficient in the vasoprotective molecule RAMP2 for 5 weeks, with or without HPE. In both the HPE and control groups, fibrosis was seen in regions adjacent to the sinusoids, but the fibrosis was less pronounced in the HPE-treated mice. Levels of TNF-α and MMP9 expression were also significantly reduced in HPE-treated mice, and oxidative stress was suppressed in the perivascular region. In addition, HPE dose-dependently increased survival of cultured endothelial cells exposed to 100 μM H2O2, and it upregulated expression of eNOS and the anti-apoptotic factors bcl-2 and bcl-xL. From these observations, we conclude that HPE ameliorates NASH-associated pathologies by suppressing inflammation, oxidative stress and fibrosis. These beneficially effects of HPE are in part attributable to its protective effects on liver sinusoidal endothelial cells. HPE could thus be an attractive therapeutic candidate with which to suppress progression from simple fatty liver to NASH
    corecore