46 research outputs found
Blood flow changes using a 3D xenogeneic collagen matrix or a subepithelial connective tissue graft for root coverage procedures: a pilot study.
BACKGROUND: The study investigated the early healing process following the treatment of single Miller class I and II recessions with a 3D xenogeneic collagen matrix (CMX) or connective tissue graft (CTG). METHODS: This pilot investigation was designed as a single-center randomized controlled parallel trial. A total of eight subjects (four per group) were treated with either CMX or CTG in the anterior maxilla. Vascular flow changes were assessed by laser Doppler flowmetry (LDF) before and after surgery and at days 1, 2, 3, 7, 14, and 30 while clinical evaluations took place at baseline and at days 60 and 180. Pain intensity perception was evaluated by the short-form McGill pain questionnaire (SF-MPQ), at days 1 and 14. RESULTS: The vascular flow fluctuated similarly in both groups pre- and post-operatively, but the CTG exhibited a more homogeneous pattern as opposed to CMX that showed a second phase of increased blood flow at 14 days. Clinically, the CTG led to greater change in mean root coverage and keratinized tissue gain but CMX was associated with lower early pain intensity scores. CONCLUSIONS: Within the limits of the study, the vascular flow alterations during the early healing of both graft types followed a similar pattern. The CMX was associated with a second peak of increased blood flow. CLINICAL RELEVANCE: The vascular flow changes after the application of CMX for single tooth recession root coverage did not show major differences from those observed after the use of a CTG. A trend for better clinical performance in terms of root coverage and keratinized tissue gain was noted for the CTG, but the initial patient morbidity was less for CMX
Multilevel Selection in Models of Prebiotic Evolution II: A Direct Comparison of Compartmentalization and Spatial Self-Organization
Multilevel selection has been indicated as an essential factor for the evolution of complexity in interacting RNA-like replicator systems. There are two types of multilevel selection mechanisms: implicit and explicit. For implicit multilevel selection, spatial self-organization of replicator populations has been suggested, which leads to higher level selection among emergent mesoscopic spatial patterns (traveling waves). For explicit multilevel selection, compartmentalization of replicators by vesicles has been suggested, which leads to higher level evolutionary dynamics among explicitly imposed mesoscopic entities (protocells). Historically, these mechanisms have been given separate consideration for the interests on its own. Here, we make a direct comparison between spatial self-organization and compartmentalization in simulated RNA-like replicator systems. Firstly, we show that both mechanisms achieve the macroscopic stability of a replicator system through the evolutionary dynamics on mesoscopic entities that counteract that of microscopic entities. Secondly, we show that a striking difference exists between the two mechanisms regarding their possible influence on the long-term evolutionary dynamics, which happens under an emergent trade-off situation arising from the multilevel selection. The difference is explained in terms of the difference in the stability between self-organized mesoscopic entities and externally imposed mesoscopic entities. Thirdly, we show that a sharp transition happens in the long-term evolutionary dynamics of the compartmentalized system as a function of replicator mutation rate. Fourthly, the results imply that spatial self-organization can allow the evolution of stable folding in parasitic replicators without any specific functionality in the folding itself. Finally, the results are discussed in relation to the experimental synthesis of chemical Darwinian systems and to the multilevel selection theory of evolutionary biology in general. To conclude, novel evolutionary directions can emerge through interactions between the evolutionary dynamics on multiple levels of organization. Different multilevel selection mechanisms can produce a difference in the long-term evolutionary trend of identical microscopic entities
Temperature and pressure effects on the bending modulus of monolayers in a ternary microemulsion
We performed small-angle neutron scattering and neutron spin echo experiments on a ternary microemulsion composed of ionic surfactant AOT, water, and decane. Thermal fluctuations of monolayers have been investigated as a function of temperature and pressure. The amphiphilic monolayers become more flexible with increasing temperature and more rigid with increasing pressure. These results are consistent with the microscopic picture that the head-head repulsion of the AOT molecules is enhanced at high temperature while an attractive interaction between the hydrophobic tails of the AOT molecules increases at high pressure
Total synthesis of rapamycin
Details of the total synthesis of rapamycin (1) are reported. The synthesis required the preparation of intermediates 4 - 9 in nonracemic form; key coupling reactions included a chromium-mediated addition of vinyl iodide 8 to aldehyde 7 and an Evans aldol reaction to couple fragments 62 and 9. Intermediates 4 and 6 were joined through an amide bond formation to afford advanced intermediate 71. Swern oxidation of the diol in 71 was followed by a selective removal of the TES groups and a second Swern oxidation. Finally, removal of the remaining silyl protecting groups provided fully deprotected, penultimate intermediate 2 in which all carbons were in their proper oxidation state. Macrocyclization was achieved through a tandem inter/intramolecular palladium-mediated Stille coupling reaction between distannylethene 3 and bis(vinyl iodide) 2. This latter process accomplished in one step the installation of the remaining two carbons of the natural product and the completion of its total synthesis
Avant-garde metalating agents: Structural basis of alkali-metal-mediated metalation
Metalation, one of the most useful and widely used synthetic methodologies, transforms a relatively inert carbon-hydrogen bond to a more labile carbon-metal bond. Until recently, most organometallic reagents that facilitate this process have combined strongly electropositive metals, such as lithium, with organic reagents to form highly polar and, by implication, highly reactive carbon-metal bonds. For example, the alkyllithium reagents and bulky lithium amides that are commonly employed for this purpose can suffer from low functional group tolerance. Lithio-products of these reactions generally have low kinetic stabilities. More recently, several groups around the world have pioneered alternative metalation reagents, complex metalators, which can be interpreted as composite molecules or mixtures made up of two or more distinct compound types. Several examples include magnesiate complexes, Lochmann-Schlosser superbases, Kondo and Uchiyama's 2,2,6,6-tetramethylpiperidide (TMP)-zincate complexes, and Knochel's turbo-Grignard and related salt-supported reagents. This Account describes our rational development of novel complex metalators based on existing structural templates and designed to execute alkali-metal-mediated metalations (AMMMs). By changing the nonalkali metal in these structures, we have produced tailor-made dianionic-dicationic structures such as [(TMEDA) center dot Na(mu-TMP)(mu-Bu-n)Mg(TMP)], [(TMEDA) center dot Na(mu-TMP)(mu-Bu-t)Zn(Bu-t)], and [(TMEDA) center dot Li(mu-TMP)Mn(CH2SiMe3)(2)] (TMEDA = N,N,N',N'-tetramethylethylenediamine). These compounds can perform unprecedented magnesiations, zincations, or manganations on aromatic substrates that are generally inert toward conventional Mg, Zn, or Mn(II) reagents. Although the alkali metal is an essential component of these new complex metalators, interestingly, the less electropositive, less polar nonalkali metal [Mg, Zn, or Mn(II)] actually carries out the deprotonation. We view this unique behavior as a mixed-metal synergic effect: intramolecular communication through metal - ligand-metal bridges directs special regioselectivities or polydeprotonations. We demonstrate structurally defined alkali-metal-mediated magnesiations (AMMMg), zincations (AMMZn), and manganations [AMMMn(II)] of representative aromatic substrates (including benzene, toluene, anisole, and ferrocene). In addition, we present remarkable meta-orientated metalations of toluene and N,N-dimethylaniline. We also review 2-fold metalations of arenes, in which an arenediide guest is encapsulated within a 12-atom polymetallic cationic (NaNNaNMgN)(2) host ring to form inverse crown structures. Furthermore, using X-ray crystallography of a turbo-Grignard reagent, we establish a link between our complex metalators and turbo-Grignard reagents. Armed with this accruing knowledge of complex metalators, we think rapid progress in "low polarity metalation" should now be possible. The greatest remaining challenge is to develop methodologies that shift these processes from stoichiometric reactions into more economical catalytic ones