14 research outputs found
Pterosin B prevents chondrocyte hypertrophy and osteoarthritis in mice by inhibiting Sik3.
植物由来成分であるプテロシンBはSIK3を阻害し変形性関節症の治療薬開発のリード化合物となる. 京都大学プレスリリース. 2016-03-31.Yahara, Y., Takemori, H., Okada, M. et al. Correction: Corrigendum: Pterosin B prevents chondrocyte hypertrophy and osteoarthritis in mice by inhibiting Sik3. Nat Commun 7, 12117 (2016).Osteoarthritis is a common debilitating joint disorder. Risk factors for osteoarthritis include age, which is associated with thinning of articular cartilage. Here we generate chondrocyte-specific salt-inducible kinase 3 (Sik3) conditional knockout mice that are resistant to osteoarthritis with thickened articular cartilage owing to a larger chondrocyte population. We also identify an edible Pteridium aquilinum compound, pterosin B, as a Sik3 pathway inhibitor. We show that either Sik3 deletion or intraarticular injection of mice with pterosin B inhibits chondrocyte hypertrophy and protects cartilage from osteoarthritis. Collectively, our results suggest Sik3 regulates the homeostasis of articular cartilage and is a target for the treatment of osteoarthritis, with pterosin B as a candidate therapeutic
Complete Remission of Methotrexate-Related Epstein-Barr-Virus-Associated Hodgkin-Like Lymphoma following Withdrawal of MTX Coupled with Clarithromycin Administration
Patients with rheumatoid arthritis (RA) are known to develop lymphoproliferative disorders (LPDs) during the course of illness, particularly in cases treated with methotrexate (MTX) for long periods. We describe a case of MTX-related Epstein-Barr-virus-(EBV-) associated LPD resembling Hodgkin’s lymphoma (HL), in which a dramatic complete remission was achieved after withdrawal of MTX coupled with clarithromycin (CAM) administration. Withdrawal of MTX coupled with CAM administration seemed to be effective for treating MTX-related EBV-associated LPDs. In particular, an immunomodulative effect of CAM might have been involved in achieving complete remission
A novel combination of bortezomib, lenalidomide, and clarithromycin produced stringent complete response in refractory multiple myeloma complicated with diabetes mellitus – clinical significance and possible mechanisms: a case report
Abstract Background In general, dexamethasone is a required component drug in various combination chemotherapies for treating multiple myeloma, and its efficacy has been widely recognized. However, administration of dexamethasone is known to cause various adverse effects including hyperglycemia which requires insulin therapy. During the course of treatment, we developed a novel effective dexamethasone-free combination regimen and evaluated it for its effect in multiple myeloma. Case presentation We report a case of 68-year-old Japanese woman with refractory advanced Bence-Jones-λ type multiple myeloma associated with diabetes mellitus. Various combination regimens were carried out, but the response to some regimens was insufficient or others containing dexamethasone, although effective, were inappropriate to continue due to aggravation of diabetes mellitus. Thus, we developed a dexamethasone-free, short dosing-period regimen consisting of bortezomib, lenalidomide, and clarithromycin. This regimen was found to be highly effective and succeeded in achieving stringent complete response. Conclusions The successful dexamethasone-free regimen clearly shows that dexamethasone is not a requisite component in treating multiple myeloma, and it can be substituted with clarithromycin. This regimen is particularly useful for treating patients with multiple myeloma associated with diabetes mellitus