54 research outputs found

    Genotyping of Mycoplasma pneumoniae strains isolated in Japan during 2019 and 2020: spread of p1 gene type 2c and 2j variant strains

    Get PDF
    We characterized 118 Mycoplasma pneumoniae strains isolated from three areas of Japan (Saitama, Kanagawa, and Osaka) during the period of 2019 and 2020. Genotyping of the p1 gene in these strains revealed that 29 of them were type 1 lineage (29/118, 24.6%), while 89 were type 2 lineage (89/118, 75.4%), thereby indicating that type 2 lineage was dominant in this period. The most prevalent variant of type 2 lineage was type 2c (57/89, 64%), while the second-most was type 2j, a novel variant identified in this study (30/89, 33.7%). Type 2j p1 is similar to type 2 g p1, but cannot be distinguished from reference type 2 (classical type 2) using the standard polymerase chain reaction-restriction fragment length polymorphism analysis (PCR-RFLP) with HaeIII digestion. Thus, we used MboI digestion in the PCR-RFLP analysis and re-examined the data from previous genotyping studies as well. This revealed that most strains reported as classical type 2 after 2010 in our studies were actually type 2j. The revised genotyping data showed that the type 2c and 2j strains have been spreading in recent years and were the most prevalent variants in Japan during the time-period of 2019 and 2020. We also analyzed the macrolide-resistance (MR) mutations in the 118 strains. MR mutations in the 23S rRNA gene were detected in 29 of these strains (29/118, 24.6%). The MR rate of type 1 lineage (14/29, 48.3%) was still higher than that of type 2 lineage (15/89, 16.9%); however, the MR rate of type 1 lineage was lower than that found in previous reports published in the 2010s, while that of type 2 lineage strains was slightly higher. Thus, there is a need for continuous surveillance of the p1 genotype and MR rate of M. pneumoniae clinical strains, to better understand the epidemiology and variant evolution of this pathogen, although M. pneumoniae pneumonia cases have decreased significantly since the COVID-19 pandemic

    Unique Epstein-Barr virus (EBV) latent gene expression, EBNA promoter usage and EBNA promoter methylation status in chronic active EBV infection.

    Get PDF
    Chronic active Epstein–Barr virus infection (CAEBV) has been considered to be a non-neoplastic T-cell lymphoproliferative disease associated with Epstein–Barr virus (EBV) infection. In EBV-associated diseases, the cell phenotype-dependent differences in EBV latent gene expression may reflect the strategy of the virus in relation to latent infection. We previously reported that EBV latent gene expression was restricted; EBV nuclear antigen 1 (EBNA1) transcripts were consistently detected in all spleen samples from five CAEBV patients, but EBNA2 transcripts were detected in only one sample. EBV latent gene expression is controlled by distinct usage of three EBNA promoters (Cp, Wp and Qp). In this study, we examined the EBNA promoter usage by RT-PCR and the methylation status in the Cp and Wp regions using bisulfite PCR analysis in spleen samples from CAEBV patients. EBNA1 transcripts were unexpectedly initiated not from Qp but from Cp in all samples in spite of the restricted form of latency. Furthermore, while Cp was active, Cp was heavily methylated, indicating that CAEBV has unique EBV latent gene expression, EBNA promoter usage and EBNA promoter methylation status, in part due to unique splicing of Cp-initiated transcripts and an activation mechanism in hypermethylated Cp

    Detection of Human Metapneumovirus Antigens in Nasopharyngeal Secretions by an Immunofluorescent-Antibody Test

    No full text
    Human metapneumovirus (hMPV) is a recently discovered pathogen associated with respiratory tract infections, primarily in young children, immunocompromised individuals, and elderly individuals. Reverse transcription-PCR (RT-PCR) has been reported to be a more sensitive method for the diagnosis of hMPV infections than virus isolation by culture and serological study. However, there has been no report on rapid methods, such as an immunofluorescent-antibody test or an enzyme-linked immunosorbent assay, for the detection of hMPV antigens in nasopharyngeal secretions. In this study, we compared an indirect immunofluorescent-antibody test (IFA) with a monoclonal antibody with RT-PCR for detection of hMPV in nasal secretions from 48 hospitalized children with respiratory tract infections. Fifteen of the 48 children were positive for hMPV by RT-PCR. IFA results were positive for 11 of the 15 RT-PCR-positive children (sensitivity, 73.3%) and 1 of the 33 RT-PCR-negative children (specificity, 97.0%). Although the sensitivity of IFA is lower than that of RT-PCR, IFA is a rapid and useful test for the diagnosis of hMPV infections in children

    Evaluation of a novel immunochromatographic assay using silver amplification technology for detection of Mycoplasma pneumoniae from throat swab samples in pediatric patients

    No full text
    Objectives: Mycoplasma pneumoniae is one of the common causative pathogens of community-acquired respiratory tract infections mainly in children and young adults. Rapid and accurate diagnostic techniques for identifying the causative pathogen would be useful for initiating treatment with an appropriate antibiotic. The purpose of the present study was to evaluate the sensitivity and specificity of a novel immunochromatographic assay using silver amplification technology using FUJI DRI-CHEM IMMUNO AG2 and FUJI DRI-CHEM IMMUNO AG cartridge Myco (FUJIFILM Co., Tokyo, Japan) for detection of M. pneumoniae. Methods: Throat swab samples were collected from 170 pediatric patients who were diagnosed with bronchitis or pneumonia. The silver amplification immunochromatographic (SAI) assay was performed using these samples and the results were compared with those of real-time PCR. The time required for the SAI assay is approximately 20 min (5 min for sample preparation and 15 min for waiting time after starting the assay). Results: The sensitivity and specificity of the SAI assay for detection of M. pneumoniae were 85.2 and 99.1%, respectively, and the assay showed positive and negative predictive values of 98.1 and 92.3%, respectively, compared with the results of real-time PCR. The diagnostic accuracy was 94.1%. Conclusions: FUJI DRI-CHEM IMMUNO AG2 and FUJI DRI-CHEM IMMUNO AG cartridge Myco are appropriate for clinical use. The optimal timing of this assay is five days or more after the onset of M. pneumoniae infection. However, PCR or other molecular methods are superior, especially with regard to sensitivity and negative predictive value
    corecore