2 research outputs found

    Polypropylene-Rendered Antiviral by Three-Dimensionally Surface-Grafted Poly(<i>N</i>‑benzyl-4-vinylpyridinium bromide)

    No full text
    To inhibit viral infection, it is necessary for the surface of polypropylene (PP), a polymer of significant industrial relevance, to possess biocidal properties. However, due to its low surface energy, PP weakly interacts with other organic molecules. The biocidal effects of quaternary ammonium compounds (QACs) have inspired the development of nonwoven PP fibers with surface-bound quaternary ammonium (QA). Despite this advancement, there is limited knowledge regarding the durability of these coatings against scratching and abrasion. It is hypothesized that the durability could be improved if the thickness of the coating layer were controlled and increased. We herein functionalized PP with three-dimensionally surface-grafted poly(N-benzyl-4-vinylpyridinium bromide) (PBVP) by a simple and rapid method involving graft polymerization and benzylation and examined the influence of different factors on the antiviral effect of the resulting plastic by using a plaque assay. The thickness of the PBVP coating, surface roughness, and amount of QACs, which jointly determine biocidal activity, could be controlled by adjusting the duration and intensity of the ultraviolet irradiation used for grafting. The best-performing sample reduced the viral infection titer of an enveloped model virus (bacteriophage Ï•6) by approximately 5 orders of magnitude after 60 min of contact and retained its antiviral activity after surface polishing-simulated scratching and abrasion, which indicated the localization of QACs across the coating interior. Our method may expand the scope of application to resin plates as well as fibers of PP. Given that the developed approach is not limited to PP and may be applied to other low-surface-energy olefinic polymers such as polyethylene and polybutene, our work paves the way for the fabrication of a wide range of biocidal surfaces for use in diverse environments, helping to prevent viral infection

    Hybrid Nanocellulosome Design from Cellulase Modules on Nanoparticles: Synergistic Effect of Catalytically Divergent Cellulase Modules on Cellulose Degradation Activity

    No full text
    Cellulosomes, which are assemblies of cellulases with various catalytic functions on a giant scaffoldin protein with a carbohydrate-binding module (CBM), efficiently degrade solid cellulosic biomass by means of synergistically coupled hydrolysis reactions. In this study, we constructed hybrid nanocellulosomes from the biotinylated catalytic domains (CDs) of two catalytically divergent cellulases (an endoglucanase and a processive endoglucanase) and biotinylated CBMs by clustering the domains and modules on streptavidin-conjugated nanoparticles. Nanocellulosomes constructed by separately clustering each type of CD with multiple CBMs on nanoparticles showed 5-fold enhancement in cellulase degradation activity relative to that of the corresponding free CDs, and mixtures of the two types of nanocellulosomes gradually and synergistically enhanced cellulase degradation activity as the CBM valency increased (finally, 2.5 times). Clustering the two types of CD together on the same nanoparticle resulted in a greater synergistic effect that was independent of CBM valency; consequently, nanocellulosomes composed of equal amounts of the endo and endoprocessive CDs clustered on a nanoparticle along with multiple CBMs (CD/CBM = 7:23) showed the best cellulose degradation activity, producing 6.5 and 2.4 times the amount of reducing sugars produced from amorphous and crystalline cellulose, respectively, by the native free CDs and CBMs in the same proportions. Our results demonstrate that hybrid nanocellulosomes constructed from the building blocks of cellulases and cellulosomes modules have the potential to serve as high-performance artificial cellulosomes
    corecore