3 research outputs found
Modeling and Simulation of a Desiccant Assisted Brayton Refrigeration Cycle
The phase-out of CFCs has shed a new light over natural refrigerants, which have null global warming potentials. Air would be a natural choice, and although the Brayton cycle usually exhibits a lower coefficient of performance when compared to vapor-compression systems of same capacity, it has been considered in applications other than aircraft cooling. These include gas separation, food processing and preservation, refrigerated containers and train air-conditioning. Price perspectives in the oil market also make the Brayton cycle an alternative to be considered as an option for automotive air conditioning. Even though the Brayton cycle is often employed in low temperature applications, the ambient humidity level is essential for the uninterrupted operation. For applications far below the ambient air dew point, the condensate is likely to cause icing at the turbine outlet, causing duct obstruction and system failure. The use of a solid desiccant would provide a thorough humidity control, allowing for increased pressure ratios (and thus lower expansion temperatures) even for significant ambient humidity levels. In the standard Brayton refrigeration cycle, the air is collected by the compressor at ambient conditions, and compressed through a specified compression ratio. The air is then cooled back to the ambient temperature at a regenerator, and sub-sequentially expanded through a turbine to the ambient pressure, at a low temperature. At the proposed cycle, the air is collected by a desiccant wheel and dehumidified, before it is admitted to the compressor. Accordingly, it can be compressed under a significant pressure ratio, without incurring in ice formation when later expanded. The desiccant wheel is dried using the hot air at the compressor outlet, by a heat exchanger which collects the heat that would be otherwise dumped by the regenerator. A mathematical model for the proposed cycle is developed, consisting of a system of non-linear equations which stems from mass and energy balances applied to each individual cycle component. The results show that the desiccant assisted cycle allows for frost-free operation even for temperatures below -60°C, which is required for fish preservation warehouses
Immunocompromised patients with acute respiratory distress syndrome : Secondary analysis of the LUNG SAFE database
The aim of this study was to describe data on epidemiology, ventilatory management, and outcome of acute respiratory distress syndrome (ARDS) in immunocompromised patients. Methods: We performed a post hoc analysis on the cohort of immunocompromised patients enrolled in the Large Observational Study to Understand the Global Impact of Severe Acute Respiratory Failure (LUNG SAFE) study. The LUNG SAFE study was an international, prospective study including hypoxemic patients in 459 ICUs from 50 countries across 5 continents. Results: Of 2813 patients with ARDS, 584 (20.8%) were immunocompromised, 38.9% of whom had an unspecified cause. Pneumonia, nonpulmonary sepsis, and noncardiogenic shock were their most common risk factors for ARDS. Hospital mortality was higher in immunocompromised than in immunocompetent patients (52.4% vs 36.2%; p < 0.0001), despite similar severity of ARDS. Decisions regarding limiting life-sustaining measures were significantly more frequent in immunocompromised patients (27.1% vs 18.6%; p < 0.0001). Use of noninvasive ventilation (NIV) as first-line treatment was higher in immunocompromised patients (20.9% vs 15.9%; p = 0.0048), and immunodeficiency remained independently associated with the use of NIV after adjustment for confounders. Forty-eight percent of the patients treated with NIV were intubated, and their mortality was not different from that of the patients invasively ventilated ab initio. Conclusions: Immunosuppression is frequent in patients with ARDS, and infections are the main risk factors for ARDS in these immunocompromised patients. Their management differs from that of immunocompetent patients, particularly the greater use of NIV as first-line ventilation strategy. Compared with immunocompetent subjects, they have higher mortality regardless of ARDS severity as well as a higher frequency of limitation of life-sustaining measures. Nonetheless, nearly half of these patients survive to hospital discharge. Trial registration: ClinicalTrials.gov, NCT02010073. Registered on 12 December 2013
Mechanical ventilation in patients with cardiogenic pulmonary edema : a sub-analysis of the LUNG SAFE study
Patients with acute respiratory failure caused by cardiogenic pulmonary edema (CPE) may require mechanical ventilation that can cause further lung damage. Our aim was to determine the impact of ventilatory settings on CPE mortality. Patients from the LUNG SAFE cohort, a multicenter prospective cohort study of patients undergoing mechanical ventilation, were studied. Relationships between ventilatory parameters and outcomes (ICU discharge/hospital mortality) were assessed using latent mixture analysis and a marginal structural model. From 4499 patients, 391 meeting CPE criteria (median age 70 [interquartile range 59-78], 40% female) were included. ICU and hospital mortality were 34% and 40%, respectively. ICU survivors were younger (67 [57-77] vs 74 [64-80] years, p < 0.001) and had lower driving (12 [8-16] vs 15 [11-17] cmHO, p < 0.001), plateau (20 [15-23] vs 22 [19-26] cmHO, p < 0.001) and peak (21 [17-27] vs 26 [20-32] cmHO, p < 0.001) pressures. Latent mixture analysis of patients receiving invasive mechanical ventilation on ICU day 1 revealed a subgroup ventilated with high pressures with lower probability of being discharged alive from the ICU (hazard ratio [HR] 0.79 [95% confidence interval 0.60-1.05], p = 0.103) and increased hospital mortality (HR 1.65 [1.16-2.36], p = 0.005). In a marginal structural model, driving pressures in the first week (HR 1.12 [1.06-1.18], p < 0.001) and tidal volume after day 7 (HR 0.69 [0.52-0.93], p = 0.015) were related to survival. Higher airway pressures in invasively ventilated patients with CPE are related to mortality. These patients may be exposed to an increased risk of ventilator-induced lung injury. Trial registration Clinicaltrials.gov NCT02010073