11,969 research outputs found

    A New Method of the High Temperature Series Expansion

    Full text link
    We formulate a new method of performing high-temperature series expansions for the spin-half Heisenberg model or, more generally, for SU(nn) Heisenberg model with arbitrary nn. The new method is a novel extension of the well-established finite cluster method. Our method emphasizes hidden combinatorial aspects of the high-temperature series expansion, and solves the long-standing problem of how to efficiently calculate correlation functions of operators acting at widely separated sites. Series coefficients are expressed in terms of cumulants, which are shown to have the property that all deviations from the lowest-order nonzero cumulant can be expressed in terms of a particular kind of moment expansion. These ``quasi-moments'' can be written in terms of corresponding ``quasi-cumulants'', which enable us to calculate higher-order terms in the high-temperature series expansion. We also present a new technique for obtaining the low-order contributions to specific heat from finite clusters.Comment: 20 pages, 30 figures, to appear in J. Stat. Phy

    A fundamental work on THz measurement techniques for application to steel manufacturing processes

    Get PDF
    The terahertz (THz) waves had not been obtained except by a huge system, such as a free electron laser, until an invention of a photo-mixing technique at Bell laboratory in 1984 [1]. The first method using the Auston switch could generate up to 1 THz [2]. After then, as a result of some efforts for extending the frequency limit, a combination of antennas for the generation and the detection reached several THz [3, 4]. This technique has developed, so far, with taking a form of filling up the so-called THz gap . At the same time, a lot of researches have been trying to increase the output power as well [5-7]. In the 1990s, a big advantage in the frequency band was brought by non-linear optical methods [8-11]. The technique led to drastically expand the frequency region and recently to realize a measurement up to 41 THz [12]. On the other hand, some efforts have yielded new generation and detection methods from other approaches, a CW-THz as well as the pulse generation [13-19]. Especially, a THz luminescence and a laser, originated in a research on the Bloch oscillator, are recently generated from a quantum cascade structure, even at an only low temperature of 60 K [20-22]. This research attracts a lot of attention, because it would be a breakthrough for the THz technique to become widespread into industrial area as well as research, in a point of low costs and easier operations. It is naturally thought that a technology of short pulse lasers has helped the THz field to be developed. As a background of an appearance of a stable Ti:sapphire laser and a high power chirped pulse amplification (CPA) laser, instead of a dye laser, a lot of concentration on the techniques of a pulse compression and amplification have been done. [23] Viewed from an application side, the THz technique has come into the limelight as a promising measurement method. A discovery of absorption peaks of a protein and a DNA in the THz region is promoting to put the technique into practice in the field of medicine and pharmaceutical science from several years ago [24-27]. It is also known that some absorption of light polar-molecules exist in the region, therefore, some ideas of gas and water content monitoring in the chemical and the food industries are proposed [28-32]. Furthermore, a lot of reports, such as measurements of carrier distribution in semiconductors, refractive index of a thin film and an object shape as radar, indicate that this technique would have a wide range of application [33-37]. I believe that it is worth challenging to apply it into the steel-making industry, due to its unique advantages. The THz wavelength of 30-300 ÂĽm can cope with both independence of a surface roughness of steel products and a detection with a sub-millimeter precision, for a remote surface inspection. There is also a possibility that it can measure thickness or dielectric constants of relatively high conductive materials, because of a high permeability against non-polar dielectric materials, short pulse detection and with a high signal-to-noise ratio of 103-5. Furthermore, there is a possibility that it could be applicable to a measurement at high temperature, for less influence by a thermal radiation, compared with the visible and infrared light. These ideas have motivated me to start this THz work

    Unobservable Higgs Boson and Spontaneous Violation of Lorentz Invariance

    Full text link
    The standard theory of elementary particle physics is modified in such a way that the Higgs boson becomes unobservable and Lorentz invariance is slightly violated at the level of the S-matrix. The basic technique of realizing these properties without violating the unitarity of the physical S-matrix is the use of the complex-ghost quantum field theory.Comment: 8 page

    Wightman-Function Approach to the Relativistic Complex-Ghost Field Theory

    Get PDF
    The relativistic complex-ghost field theory is covariantly formulated in terms of Wightman functions. The Fourier transform of the 2-point Wightman function of a complex-ghost pair is explicitly calculated, and its spontaneous breakdown of Lorentz invariance is compared with that of the corresponding Feynman integral.Comment: 10 page
    • …
    corecore