6,235 research outputs found

    Skistodiaptomus pallidus (Copepoda: Diaptomidae) establishment in New Zealand natural lakes, and its effects on zooplankton community composition

    Get PDF
    The North American calanoid copepod Skistodiaptomus pallidus is an emerging invader globally, with non-indigenous populations recorded from constructed waters in New Zealand, Germany and Mexico since 2000. We examined the effects of S. pallidus establishment on the zooplankton community of a natural lake, Lake Kereta, where it was first recorded in late-2008, coincident with releases of domestically cultured grass carp (Ctenopharyngodon idella). Although not present in any of our samples prior to August 2008, S. pallidus was found in all samples collected in the subsequent five years. ANOSIM indicated zooplankton community composition significantly differed between samples collected before and after S. pallidus invasion, whether the invader was included in the analysis or not. Zooplankton species affected most greatly were the copepods Calamoecia lucasi and Mesocyclops sp., which decreased in their relative importance, and the cladocerans Bosmina meridionalis and Daphnia galeata, which increased. Rotifer species were relatively unaffected. As the length of grass carp released were >6.5 cm, direct predatory effects by this species on the zooplankton community are unlikely. Associated reductions in macrophyte biomass could explain increases in the relative abundances of planktonic cladocerans (B. meridionalis and D. galeata). However, the effect of macrophyte reduction by grass carp on zooplankton communities is considered to be limited elsewhere, while the reduced macrophyte biomass cannot explain the decrease in relative abundance of the native planktonic calanoid copepod C. lucasi. Competition between C. lucasi and S. pallidus is the most compelling explanation for the reduction in importance of the native calanoid copepod species. Skistodiaptomus pallidus appears to have undergone a “boom-and-bust” cycle in Lake Kereta, increasing in relative abundance in the first three years following establishment, before declining in importance

    Economics of prawn culture in Vypeen, Kerala, with emphasis on some little-known facts

    Get PDF
    With the increasing demand for prawns in export market, extensive culture practices have given way to semi-intensive or intensive systems in many parts of the country. The perennial and most of the seasonal ponds of Vypeen Island near Kochi are still of extensive nature with little or no management. Although, some studies on economics of prawn farming in seasonal ponds are available (George, 1974, 1980; Purushan, 1987; Sathiadhas et al., 1989), such information on the perennial fields is almost lacking. Diseases, parasites, predators and competitors cause concern in culture systems (Shang, 1981). Yet, it seems to be ignored in economic analysis except on a very few occasions, as for instance by Mammen et al. (1980) and Beynon et al. (1981). The present paper, therefore, reports lhe economics of the perennial prawn culture fields in Vypeen pointing out what harm predation and disease cause in production. Some observations on the seasonal system are also made for comparison

    Economics of Clam Exploitation from Backwaters at Azhicode - A Case Study

    Get PDF
    The exploitation of clams at Azhicode takes place throughout the year. At the onset of south west monsoon the flood water washes down the clam shells and accumulates them near the bar mouth from where they are immediately fished

    If you can't be with the one you love, love the one you're with: How individual habituation of agent interactions improves global utility

    No full text
    Simple distributed strategies that modify the behaviour of selfish individuals in a manner that enhances cooperation or global efficiency have proved difficult to identify. We consider a network of selfish agents who each optimise their individual utilities by coordinating (or anti-coordinating) with their neighbours, to maximise the pay-offs from randomly weighted pair-wise games. In general, agents will opt for the behaviour that is the best compromise (for them) of the many conflicting constraints created by their neighbours, but the attractors of the system as a whole will not maximise total utility. We then consider agents that act as 'creatures of habit' by increasing their preference to coordinate (anti-coordinate) with whichever neighbours they are coordinated (anti-coordinated) with at the present moment. These preferences change slowly while the system is repeatedly perturbed such that it settles to many different local attractors. We find that under these conditions, with each perturbation there is a progressively higher chance of the system settling to a configuration with high total utility. Eventually, only one attractor remains, and that attractor is very likely to maximise (or almost maximise) global utility. This counterintutitve result can be understood using theory from computational neuroscience; we show that this simple form of habituation is equivalent to Hebbian learning, and the improved optimisation of global utility that is observed results from wellknown generalisation capabilities of associative memory acting at the network scale. This causes the system of selfish agents, each acting individually but habitually, to collectively identify configurations that maximise total utility

    Fredholm factorization of Wiener-Hopf scalar and matrix kernels

    Get PDF
    A general theory to factorize the Wiener-Hopf (W-H) kernel using Fredholm Integral Equations (FIE) of the second kind is presented. This technique, hereafter called Fredholm factorization, factorizes the W-H kernel using simple numerical quadrature. W-H kernels can be either of scalar form or of matrix form with arbitrary dimensions. The kernel spectrum can be continuous (with branch points), discrete (with poles), or mixed (with branch points and poles). In order to validate the proposed method, rational matrix kernels in particular are studied since they admit exact closed form factorization. In the appendix a new analytical method to factorize rational matrix kernels is also described. The Fredholm factorization is discussed in detail, supplying several numerical tests. Physical aspects are also illustrated in the framework of scattering problems: in particular, diffraction problems. Mathematical proofs are reported in the pape

    Dynamics of vascular branching morphogenesis: the effect of blood and tissue flow

    Get PDF
    Vascularization of embryonic organs or tumors starts from a primitive lattice of capillaries. Upon perfusion, this lattice is remodeled into branched arteries and veins. Adaptation to mechanical forces is implied to play a major role in arterial patterning. However, numerical simulations of vessel adaptation to haemodynamics has so far failed to predict any realistic vascular pattern. We present in this article a theoretical modeling of vascular development in the yolk sac based on three features of vascular morphogenesis: the disconnection of side branches from main branches, the reconnection of dangling sprouts ('dead ends'), and the plastic extension of interstitial tissue, which we have observed in vascular morphogenesis. We show that the effect of Poiseuille flow in the vessels can be modeled by aggregation of random walkers. Solid tissue expansion can be modeled by a Poiseuille (parabolic) deformation, hence by deformation under hits of random walkers. Incorporation of these features, which are of a mechanical nature, leads to realistic modeling of vessels, with important biological consequences. The model also predicts the outcome of simple mechanical actions, such as clamping of vessels or deformation of tissue by the presence of obstacles. This study offers an explanation for flow-driven control of vascular branching morphogenesis

    Mariculture Research under the Postgraduate Programme in Mariculture Part 4

    Get PDF
    Mariculture Research under the Postgraduate Programme in Maricultur

    Dual production of polyhydroxyalkanoates and antibacterial/antiviral gold nanoparticles

    Get PDF
    Gold nanoparticles (AuNPs) have been explored for their use in medicine. Here, we report a sustainable, and cost-effective method to produce AuNPs using a bacterial strain such as Pseudomonas mendocina CH50 which is also known to be a polyhydroxyalkanoate (PHA) producer. A cell-free bacterial supernatant, which is typically discarded after PHA extraction, was used to produce spherical AuNPs of 3.5 ± 1.5 nm in size as determined by Transmission Electron Microscopy (TEM) analysis. The AuNPs/PHA composite coating demonstrated antibacterial activity against Staphylococcus aureus 6538P, and antiviral activity, with a 75% reduction in viral infectivity against SARS-CoV-2 pseudotype virus
    corecore