9,373 research outputs found

    Social work education, training and standards in the Asia-Pacific region

    Get PDF
    This article discusses the joint project between the International Association of Schools of Social Work (IASSW) and the International Federation of Social Workers (IFSW) to establish guidelines for the training and standard setting that elucidates what social work represents on a global level. While it is impossible to address all the issues that might be significant in such a large scope, attention is given to the challenges establishing global standards might encounter in a region as diverse as the Asia-Pacific

    Community Change within a Caribbean Coral Reef Marine Protected Area following Two Decades of Local Management

    Get PDF
    Structural change in both the habitat and reef-associated fish assemblages within spatially managed coral reefs can provide key insights into the benefits and limitations of Marine Protected Areas (MPAs). While MPA zoning effects on particular target species are well reported, we are yet to fully resolve the various affects of spatial management on the structure of coral reef communities over decadal time scales. Here, we document mixed affects of MPA zoning on fish density, biomass and species richness over the 21 years since establishment of the Saba Marine Park (SMP). Although we found significantly greater biomass and species richness of reef-associated fishes within shallow habitats (5 meters depth) closed to fishing, this did not hold for deeper (15 m) habitats, and there was a widespread decline (38% decrease) in live hard coral cover and a 68% loss of carnivorous reef fishes across all zones of the SMP from the 1990s to 2008. Given the importance of live coral for the maintenance and replenishment of reef fishes, and the likely role of chronic disturbance in driving coral decline across the region, we explore how local spatial management can help protect coral reef ecosystems within the context of large-scale environmental pressures and disturbances outside the purview of local MPA management.Funding was provided by the Saba Conservation Foundation ((SCF), King Abdullah University of Science and Technology, The Australian National University and Australian Research Council. The funders had no role in study design and analysis, decision to publish, or preparation of the manuscript. Staff of the SCF were involved in data collection

    Micellar Nanocarriers of Hydroxytyrosol Are Protective against Parkinsonā€™s Related Oxidative Stress in an In Vitro hCMEC/D3-SH-SY5Y Co-Culture System

    Get PDF
    Hydroxytyrosol (HT) is a natural phenolic antioxidant which has neuroprotective effects in models of Parkinsonā€™s disease (PD). Due to issues such as rapid metabolism, HT is unlikely to reach the brain at therapeutic concentrations required for a clinical effect. We have previously developed micellar nanocarriers from Pluronic F68Ā® (P68) and dequalinium (DQA) which have suitable characteristics for brain delivery of antioxidants and iron chelators. The aim of this study was to utilise the P68 + DQA nanocarriers for HT alone, or in combination with the iron chelator deferoxamine (DFO), and assess their physical characteristics and ability to pass the bloodā€“brain barrier and protect against rotenone in a cellular hCMEC/D3-SH-SY5Y co-culture system. Both HT and HT + DFO formulations were less than 170 nm in size and demonstrated high encapsulation efficiencies (up to 97%). P68 + DQA nanoformulation enhanced the mean bloodā€“brain barrier (BBB) passage of HT by 50% (p 0.0001, n = 6). This resulted in increased protection against rotenone induced cytotoxicity and oxidative stress by up to 12% and 9%, respectively, compared to the corresponding free drug treatments (p 0.01, n = 6). This study demonstrates for the first time the incorporation of HT and HT + DFO into P68 + DQA nanocarriers and successful delivery of these nanocarriers across a BBB model to protect against PD-related oxidative stress. These nanocarriers warrant further investigation to evaluate whether this enhanced neuroprotection is exhibited in in vivo PD models

    Universality and properties of neutron star type I critical collapses

    Full text link
    We study the neutron star axisymmetric critical solution previously found in the numerical studies of neutron star mergers. Using neutron star-like initial data and performing similar merger simulations, we demonstrate that the solution is indeed a semi-attractor on the threshold plane separating the basin of a neutron star and the basin of a black hole in the solution space of the Einstein equations. In order to explore the extent of the attraction basin of the neutron star semiattractor, we construct initial data phase spaces for these neutron star-like initial data. From these phase spaces, we also observe several interesting dynamical scenarios where the merged object is supported from prompt collapse. The properties of the critical index of the solution, in particular, its dependence on conserved quantities, are then studied. From the study, it is found that a family of neutron star semi-attractors exist that can be classified by both their rest masses and ADM masses.Comment: 13 pages, 12 figures, 1 new reference adde

    A kinetic model of radiating electrons

    Get PDF
    A kinetic theory is developed to describe radiating electrons whose motion is governed by the Lorentz-Dirac equation. This gives rise to a generalized Vlasov equation coupled to an equation for the evolution of the physical submanifold of phase space. The pathological solutions of the 1-particle theory may be removed by expanding the latter equation in powers of Ļ„ ā‰” q 2/6Ļ€m. The radiation-induced change in entropy is explored and its physical origin is discussed. As a simple demonstration of the theory, the radiative damping rate of longitudinal plasma waves is calculated

    Curcumin and N-Acetylcysteine Nanocarriers Alone or Combined with Deferoxamine Target the Mitochondria and Protect against Neurotoxicity and Oxidative Stress in a Co-Culture Model of Parkinsonā€™s Disease

    Get PDF
    As the blood-brain barrier (BBB) prevents most compounds from entering the brain, nanocarrier delivery systems are frequently being explored to potentially enhance the passage of drugs due to their nanometer sizes and functional characteristics. This study aims to investigate whether PluronicĀ® F68 (P68) and dequalinium (DQA) nanocarriers can improve the ability of curcumin, n-acetylcysteine (NAC) and/or deferoxamine (DFO), to access the brain, specifically target mitochondria and protect against rotenone by evaluating their effects in a combined TranswellĀ® hCMEC/D3 BBB and SH-SY5Y based cellular Parkinsonā€™s disease (PD) model. P68 + DQA nanoformulations enhanced the mean passage across the BBB model of curcumin, NAC and DFO by 49%, 28% and 49%, respectively (p < 0.01, n = 6). Live cell mitochondrial staining analysis showed consistent co-location of the nanocarriers within the mitochondria. P68 + DQA nanocarriers also increased the ability of curcumin and NAC, alone or combined with DFO, to protect against rotenone induced cytotoxicity and oxidative stress by up to 19% and 14% (p < 0.01, n = 6), as measured by the MTT and mitochondrial hydroxyl radical assays respectively. These results indicate that the P68 + DQA nanocarriers were successful at enhancing the protective effects of curcumin, NAC and/or DFO by increasing the brain penetrance and targeted delivery of the associated bioactives to the mitochondria in this model. This study thus emphasises the potential effectiveness of this nanocarrier strategy in fully utilising the therapeutic benefit of these antioxidants and lays the foundation for further studies in more advanced models of PD
    • ā€¦
    corecore