647 research outputs found

    Critical fluctuations of noisy period-doubling maps

    Full text link
    We extend the theory of quasipotentials in dynamical systems by calculating, within a broad class of period-doubling maps, an exact potential for the critical fluctuations of pitchfork bifurcations in the weak noise limit. These far-from-equilibrium fluctuations are described by finite-size mean field theory, placing their static properties in the same universality class as the Ising model on a complete graph. We demonstrate that the effective system size of noisy period-doubling bifurcations exhibits universal scaling behavior along period-doubling routes to chaos.Comment: 11 pages, 5 figure

    Spatial patterns of tree yield explained by endogenous forces through a correspondence between the Ising model and ecology.

    Get PDF
    Spatial patterning of periodic dynamics is a dramatic and ubiquitous ecological phenomenon arising in systems ranging from diseases to plants to mammals. The degree to which spatial correlations in cyclic dynamics are the result of endogenous factors related to local dynamics vs. exogenous forcing has been one of the central questions in ecology for nearly a century. With the goal of obtaining a robust explanation for correlations over space and time in dynamics that would apply to many systems, we base our analysis on the Ising model of statistical physics, which provides a fundamental mechanism of spatial patterning. We show, using 5 y of data on over 6,500 trees in a pistachio orchard, that annual nut production, in different years, exhibits both large-scale synchrony and self-similar, power-law decaying correlations consistent with the Ising model near criticality. Our approach demonstrates the possibility that short-range interactions can lead to long-range correlations over space and time of cyclic dynamics even in the presence of large environmental variability. We propose that root grafting could be the common mechanism leading to positive short-range interactions that explains the ubiquity of masting, correlated seed production over space through time, by trees

    Insights Into the Feeding Behaviors and Biomechanics of \u3ci\u3eVarroa destructor\u3c/i\u3e Mites on Honey Bee Pupae Using Electropenetrography and Histology

    Get PDF
    Feeding behaviors and biomechanics of female Varroa destructor mites are revealed from AC-DC electropenetrography (EPG) recordings of mites feeding from Apis mellifera honey bee pupae and histology of mite internal ingestion apparatus. EPG signals characteristic of arthropod suction feeding (ingestion) were identified for mites that fed on pupae during overnight recordings. Ingestion by these mites was confirmed afterwards by observing internally fluorescent microbeads previously injected into their hosts. Micrographs of internal ingestion apparatus illustrate the connection between a gnathosomal tube and a pharyngeal lumen, which is surrounded by alternating dilator and constrictor muscles. Inspection of EPG signals showed the muscularized mite pharyngeal pump operates at a mean repetition rate of 4.5 cycles/s to ingest host fluids. Separate feeding events observed for mites numbered between 23 and 33 over approximately 16 h of recording, with each event lasting ~10 s. Feeding events were each separated by ~2 min. Consecutive feeding events separated by either locomotion or prolonged periods of quiescence were grouped into feeding bouts, which ranged in number from one to six. Statistical analyses of EPG data revealed that feeding events were prolonged for mites having lower pharyngeal pump frequencies, and mites having prolonged feeding events went unfed for significantly more time between feeding events. These results suggest that mites may adjust behaviors to meet limitations of their feeding apparatus to acquire similar amounts of food. Data reported here help to provide a more robust view of Varroa mite feeding than those previously reported and are both reminiscent of, as well as distinct from, some other acarines and fluid-feeding insects

    Electroweak Precision Constraints on the Littlest Higgs Model with T Parity

    Full text link
    We compute the leading corrections to the properties of W and Z bosons induced at the one-loop level in the SU(5)/SO(5) Littlest Higgs model with T parity, and perform a global fit to precision electroweak data to determine the constraints on the model parameters. We find that a large part of the model parameter space is consistent with data. Values of the symmetry breaking scale as low as 500 GeV are allowed, indicating that no significant fine tuning in the Higgs potential is required. We identify a region within the allowed parameter space in which the lightest T-odd particle, the partner of the hypercharge gauge boson, has the correct relic abundance to play the role of dark matter. In addition, we find that a consistent fit to data can be obtained for large values of the Higgs mass, up to 800 GeV, due to the possibility of a partial cancellation between the contributions to the T parameter from Higgs loops and new physics.Comment: 23 pages, 9 figures. Minor correction

    Inhibition of Inducible Nitric Oxide Synthase Expression by a Novel Small Molecule Activator of the Unfolded Protein Response

    Get PDF
    The transcription of inducible nitric oxide synthase (iNOS) is activated by a network of proinflammatory signaling pathways. Here we describe the identification of a small molecule that downregulates the expression of iNOS mRNA and protein in cytokine-activated cells and suppresses nitric oxide production in vivo. Mechanistic analysis suggests that this small molecule, erstressin, also activates the unfolded protein response (UPR), a signaling pathway triggered by endoplasmic reticulum stress. Erstressin induces rapid phosphorylation of eIF2α and the alternative splicing of XBP-1, hallmark initiating events of the UPR. Further, erstressin activates the transcription of multiple genes involved in the UPR. These data suggest an inverse relationship between UPR activation and iNOS mRNA and protein expression under proinflammatory conditions
    corecore