58 research outputs found

    Measurements of flux dependent screening in Aharonov-Bohm rings

    Full text link
    In order to investigate the effect of electronic phase coherence on screening we have measured the flux dependent polarizability of isolated mesoscopic rings at 350 MHz. At low temperature (below 100 mK) both non-dissipative and dissipative parts of the polarizability exhibit flux oscillations with a period of half a flux quantum in a ring. The sign and amplitude of the effect are in good agreement with recent theoretical predictions. The observed positive magneto-polarizability corresponds to an enhancement of screening when time reversal symmetry is broken. The effect of electronic density and temperature are also measured.Comment: 4 pages, revtex, 4 figures, to appear in Phys. Rev. Let

    Magneto-polarisability of mesoscopic rings

    Full text link
    We calculate the average polarisability of two dimensional mesoscopic rings in the presence of an Aharonov-Bohm flux. The screening is taken into account self-consistently within a mean-field approximation. We investigate the effects of statistical ensemble, finite frequency and disorder. We emphasize geometrical effects which make the observation of field dependent polarisability much more favourable on rings than on disks or spheres of comparable radius. The ratio of the flux dependent to the flux independent part is estimated for typical GaAs rings.Comment: pages, Revtex, 1 eps figur

    Effect of disorder on the conductance of a Cu atomic point contact

    Get PDF
    We present a systematic study of the effect of the disorder in copper point contacts. We show that peaks in the conductance histogram of copper point contacts shift upon addition of nickel impurities. The shift increases initially linerarly with the nickel concentration, thus confirming that it is due to disorder in the nanowire, in accordance with predictions. In general, this shift is modelled as a resistance R_s which is placed in series with the contact resistance R_c. However, we obtain different R_s values for the two peaks in the histogram, R_s being larger for the peak at higher conductance.Comment: 6 pages, 4 figure

    Magneto-polarisability of mesoscopic systems

    Full text link
    In order to understand how screening is modified by electronic interferences in a mesoscopic isolated system, we have computed both analytically and numerically the average thermodynamic and time dependent polarisabilities of two dimensional mesoscopic samples in the presence of an Aharonov-Bohm flux. Two geometries have been considered: rings and squares. Mesoscopic correction to screening are taken into account in a self consistent way, using the response function formalism. The role of the statistical ensemble (canonical and grand canonical), disorder and frequency have been investigated. We have also computed first order corrections to the polarisability due to electron-electron interactions. Our main results concern the diffusive regime. In the canonical ensemble, there is no flux dependence polarisability when the frequency is smaller than the level spacing. On the other hand, in the grand canonical ensemble for frequencies larger than the mean broadening of the energy levels (but still small compared to the level spacing), the polarisability oscillates with flux, with the periodicity h/2eh/2e. The order of magnitude of the effect is given by δα/α(λs/Wg)\delta \alpha/\alpha \propto (\lambda_s/Wg), where λ\lambda is the Thomas Fermi screening length, WW the width of the rings or the size of the squares and gg their average dimensionless conductance. This magnetopolarisability of Aharonov-Bohm rings has been recently measured experimentally \cite{PRL_deblock00} and is in good agreement with our grand canonical result.Comment: 12 pages, 10 figures, revte

    Frequency Dependence of Magnetopolarizability of Mesoscopic Grains

    Full text link
    We calculate average magnetopolarizability of an isolated metallic sample at frequency ω\omega comparable to the mean level spacing Δ\Delta. The frequency dependence of the magnetopolarizability is described by a universal function of ω/Δ\omega/\Delta.Comment: 3 pages, 1 figur

    Local tunneling spectroscopy of the electron-doped cuprate Sm1.85Ce0.15CuO4

    Full text link
    We present local tunneling spectroscopy in the optimally electron-doped cuprate Sm2-xCexCuO4 x=0.15. A clear signature of the superconducting gap is observed with an amplitude ranging from place to place and from sample to sample (Delta~3.5-6meV). Another spectroscopic feature is simultaneously observed at high energy above \pm 50meV. Its energy scale and temperature evolution is found to be compatible with previous photoemission and optical experiments. If interpreted as the signature of antiferromagnetic order in the samples, these results could suggest the coexistence on the local scale of antiferromagnetism and superconductivity on the electron-doped side of cuprate superconductors

    Probing the superconducting condensate on a nanometer scale

    Full text link
    Superconductivity is a rare example of a quantum system in which the wavefunction has a macroscopic quantum effect, due to the unique condensate of electron pairs. The amplitude of the wavefunction is directly related to the pair density, but both amplitude and phase enter the Josephson current : the coherent tunneling of pairs between superconductors. Very sensitive devices exploit the superconducting state, however properties of the {\it condensate} on the {\it local scale} are largely unknown, for instance, in unconventional high-Tc_c cuprate, multiple gap, and gapless superconductors. The technique of choice would be Josephson STS, based on Scanning Tunneling Spectroscopy (STS), where the condensate is {\it directly} probed by measuring the local Josephson current (JC) between a superconducting tip and sample. However, Josephson STS is an experimental challenge since it requires stable superconducting tips, and tunneling conditions close to atomic contact. We demonstrate how these difficulties can be overcome and present the first spatial mapping of the JC on the nanometer scale. The case of an MgB2_2 film, subject to a normal magnetic field, is considered.Comment: 7 pages, 6 figure

    Probing the superfluid velocity with a superconducting tip: the Doppler shift effect

    Full text link
    We address the question of probing the supercurrents in superconducting (SC) samples on a local scale by performing Scanning Tunneling Spectroscopy (STS) experiments with a SC tip. In this configuration, we show that the tunneling conductance is highly sensitive to the Doppler shift term in the SC quasiparticle spectrum of the sample, thus allowing the local study of the superfluid velocity. Intrinsic screening currents, such as those surrounding the vortex cores in a type II SC in a magnetic field, are directly probed. With Nb tips, the STS mapping of the vortices, in single crystal 2H-NbSe_2, reveals both the vortex cores, on the scale of the SC coherence length ξ\xi, and the supercurrents, on the scale of the London penetration length λ\lambda. A subtle interplay between the SC pair potential and the supercurrents at the vortex edge is observed. Our results open interesting prospects for the study of screening currents in any superconductor.Comment: 4 pages, 5 figure

    Scanning Tunneling Spectroscopy on the novel superconductor CaC6

    Full text link
    We present scanning tunneling microscopy and spectroscopy of the newly discovered superconductor CaC6_6. The tunneling conductance spectra, measured between 3 K and 15 K, show a clear superconducting gap in the quasiparticle density of states. The gap function extracted from the spectra is in good agreement with the conventional BCS theory with Δ(0)\Delta(0) = 1.6 ±\pm 0.2 meV. The possibility of gap anisotropy and two-gap superconductivity is also discussed. In a magnetic field, direct imaging of the vortices allows to deduce a coherence length in the ab plane ξab\xi_{ab}\simeq 33 nm
    corecore