17 research outputs found

    ASCT-1 Is a Neutral Amino Acid Exchanger with Chloride Channel Activity

    Get PDF
    The ubiquitous transport activity known as system ASC is characterized by a preference for small neutral amino acids including alanine, serine, and cysteine. ASCT-1 and ASCT-2, recently cloned transporters exhibiting system ASC-like selectivity, are members of a major amino acid transporter family that includes a number of glutamate transporters. Here we show that ASCT1 functions as an electroneutral exchanger that mediates negligible net amino acid flux. The electrical currents previously shown to be associated with ASCT1-mediated transport result from activation of a thermodynamically uncoupled chloride conductance with permeation properties similar to those described for the glutamate transporter subfamily. Like glutamate transporters, ASCT1 activity requires extracellular Na+. However, unlike glutamate transporters, which mediate net flux and complete a transport cycle by countertransport of K+, ASCT-1 mediates only homo- and heteroexchange of amino acids and is insensitive to K+. The properties of ASCT-1 suggest that it may function to equilibrate different pools of neutral amino acids and provide a mechanism to link amino acid concentration gradient

    Messenger RNA Expression of Transporter and Ion Channel Genes in Undifferentiated and Differentiated Caco-2 Cells Compared to Human Intestines

    Get PDF
    Purpose. The purpose of this work was to study the influence of cell differentiation on the mRNA expression of transporters and channels in Caco-2 cells and to assess Caco-2 cells as a model for carrier-mediated drug transport in the intestines. Method. Gene mRNA expression was measured using a custom-designed microarray chip with 750 deoxyoligonucleotide probes (70mers). Each oligomer was printed four times on poly-lysine-coated glass slides. Expression profiles were expressed as ratio values between fluorescence intensities of Cy3 and Cy5 dye-labeled cDNA derived from poly(A) + RNA samples of Caco-2 cells and total RNA of human intestines. Results. Significant differences in the mRNA expression profile of transporters and channels were observed upon differentiation of Caco-2 cells from 5 days to 2 weeks in culture, including changes for MAT8, S-protein, and Nramp2. Comparing Caco-2 cells of different passage number revealed few changes in mRNAs except for GLUT3, which was down-regulated 2.4-fold within 13 passage numbers. Caco-2 cells had a similar expression profile when either cultured in flasks or on filters but differed more strongly from human small and large intestine, regardless of the differentiation state of Caco-2 cells. Expression of several genes highly transcribed in small or large intestines differed fourfold or more in Caco-2 cells. Conclusions. Although Caco-2 cells have proven a suitable model for studying carrier-mediated transport in human intestines, the expression of specific transporter and ion channel genes may differ substantiall

    Differential Modulation of Human Glutamate Transporter Subtypes by Arachidonic Acid

    Get PDF
    Arachidonic acid has been proposed to be a messenger molecule released following synaptic activation of glutamate receptors and during ischemia. Here we demonstrate that micromolar levels of arachidonic acid inhibit glutamate uptake mediated by EAAT1, a human excitatory amino acid transporter widely expressed in brain and cerebellum, by reducing the maximal transport rate approximately 30%. In contrast, arachidonic acid increased transport mediated by EAAT2, a subtype abundantly expressed in forebrain and midbrain, by causing the apparent affinity for glutamate to increase more than 2-fold. The results demonstrate that the response of different glutamate transporter subtypes to arachidonic acid could influence synaptic transmission and modulate excitotoxicity via positive or negative feedback according to the transporter(s) present in a particular region

    Mutation of an Amino Acid Residue Influencing Potassium Coupling in the Glutamate Transporter GLT-1 Induces Obligate Exchange

    Get PDF
    Glutamate transporters maintain low synaptic concentrations of neurotransmitter by coupling uptake to flux of other ions. After cotransport of glutamic acid with Na+, the cycle is completed by countertransport of K+. We have identified an amino acid residue (glutamate 404) influencing ion coupling in a domain of the transporter implicated previously in kainate binding. Mutation of this residue to aspartate (E404D) prevents both forward and reverse transport induced by K+. Sodium-dependent transmitter exchange and a transporter-mediated chloride conductance are unaffected by the mutation, indicating that this residue selectively influences potassium flux coupling. The results support a kinetic model in which sodium and potassium are translocated in distinct steps and suggest that this highly conserved region of the transporter is intimately associated with the ion permeation pathway

    Diverse Trafficking Patterns Due to Multiple Traffic Motifs in G Protein-Activated Inwardly Rectifying Potassium Channels from Brain and Heart

    Get PDF
    AbstractG protein-activated inwardly rectifying potassium channels (Kir3, GIRK) provide an important mechanism for neurotransmitter regulation of membrane excitability. GIRK channels are tetramers containing various combinations of Kir3 subunits (Kir3.1–Kir3.4). We find that different combinations of Kir3 subunits exhibit a surprisingly complex spectrum of trafficking phenotypes. Kir3.2 and Kir3.4, but not Kir3.1, contain ER export signals that are important for plasma membrane expression of Kir3.1/Kir3.2 and Kir3.1/Kir3.4 heterotetramers, the GIRK channels found in the brain and the heart, respectively. Additional motifs in Kir3.2 and Kir3.4 control the trafficking between endosome and plasma membrane. In contrast, the Kir3.3 subunit potently inhibits plasma membrane expression by diverting the heterotetrameric channels to lysosomes. Such rich trafficking behaviors provide a mechanism for dynamic regulation of GIRK channel density in the plasma membrane

    Misfolding diverts CFTR from recycling to degradation: quality control at early endosomes

    Get PDF
    To investigate the degradation mechanism of misfolded membrane proteins from the cell surface, we used mutant cystic fibrosis transmembrane conductance regulators (CFTRs) exhibiting conformational defects in post-Golgi compartments. Here, we show that the folding state of CFTR determines the post-endocytic trafficking of the channel. Although native CFTR recycled from early endosomes back to the cell surface, misfolding prevented recycling and facilitated lysosomal targeting by promoting the ubiquitination of the channel. Rescuing the folding defect or down-regulating the E1 ubiquitin (Ub)-activating enzyme stabilized the mutant CFTR without interfering with its internalization. These observations with the preferential association of mutant CFTRs with Hrs, STAM-2, TSG101, hVps25, and hVps32, components of the Ub-dependent endosomal sorting machinery, establish a functional link between Ub modification and lysosomal degradation of misfolded CFTR from the cell surface. Our data provide evidence for a novel cellular mechanism of CF pathogenesis and suggest a paradigm for the quality control of plasma membrane proteins involving the coordinated function of ubiquitination and the Ub-dependent endosomal sorting machinery

    Molecular Basis for KATP Assembly Transmembrane Interactions Mediate Association of a K+ Channel with an ABC Transporter

    Get PDF
    AbstractKATP channels are large heteromultimeric complexes containing four subunits from the inwardly rectifying K+ channel family (Kir6.2) and four regulatory sulphonylurea receptor subunits from the ATP-binding cassette (ABC) transporter family (SUR1 and SUR2A/B). The molecular basis for interactions between these two unrelated protein families is poorly understood. Using novel trafficking-based interaction assays, coimmunoprecipitation, and current measurements, we show that the first transmembrane segment (M1) and the N terminus of Kir6.2 are involved in KATP assembly and gating. Additionally, the transmembrane domains, but not the nucleotide-binding domains, of SUR1 are required for interaction with Kir6.2. The identification of specific transmembrane interactions involved in KATP assembly may provide a clue as to how ABC proteins that transport hydrophobic substrates evolved to regulate other membrane proteins
    corecore