2 research outputs found

    Potential Founder Variants in COL4A4 Identified in Bukharian Jews Linked to Autosomal Dominant and Autosomal Recessive Alport Syndrome

    No full text
    Background: Alport syndrome is a hereditary disorder caused by pathogenic variants in the COL4A gene, which can be inherited in an autosomal recessive, dominant, or X-linked pattern. In the Bukharian Jewish population, no founder pathogenic variant has been reported in COL4A4. Methods: The cohort included 38 patients from 22 Bukharian Jewish families with suspected Alport syndrome who were referred the nephrogenetics clinic between 2012 and 2022. The study collected demographic, clinical, and genetic data from electronic medical records, which were used to evaluate the molecular basis of the disease using Sanger sequencing, and next-generation sequencing. Results: Molecular diagnosis was confirmed in 20/38 patients, with each patient having at least one of the three disease-causing COL4A4 variants detected: c.338GA (p.Gly1008Arg), and c.871-6T>C. In addition, two patients were obligate carriers. Overall, there were 17 heterozygotes, 2 compound heterozygotes, and 3 homozygotes. Each variant was detected in more than one unrelated family. All patients had hematuria with/without proteinuria at referral, and the youngest patient with proteinuria (age 5 years) was homozygous for the c.338G>A variant. End-stage renal disease was diagnosed in two patients at the age of 38 years, a compound heterozygote for c.338G>A and c.871-6T>C. Hearing deterioration was detected in three patients, the youngest aged 40 years, all of whom were heterozygous for c.338G>A. Conclusion: This study unveils three novel disease-causing variants, c.3022G>A, c.871-6T>C, and c.338G>A, in the COL4A4 gene that are recurrent among Jews of Bukharian ancestry, and cause Alport syndrome in both dominant and recessive autosomal inheritance patterns

    MN1 C-terminal truncation syndrome is a novel neurodevelopmental and craniofacial disorder with partial rhombencephalosynapsis

    No full text
    MN1 encodes a transcriptional co-regulator without homology to other proteins, previously implicated in acute myeloid leukaemia and development of the palate. Large deletions encompassing MN1 have been reported in individuals with variable neurodevelopmental anomalies and non-specific facial features. We identified a cluster of de novo truncating mutations in MN1 in a cohort of 23 individuals with strikingly similar dysmorphic facial features, especially midface hypoplasia, and intellectual disability with severe expressive language delay. Imaging revealed an atypical form of rhombencephalosynapsis, a distinctive brain malformation characterized by partial or complete loss of the cerebellar vermis with fusion of the cerebellar hemispheres, in 8/10 individuals. Rhombencephalosynapsis has no previously known definitive genetic or environmental causes. Other frequent features included perisylvian polymicrogyria, abnormal posterior clinoid processes and persistent trigeminal artery. MN1 is encoded by only two exons. All mutations, including the recurrent variant p.Arg1295* observed in 8/21 probands, fall in the terminal exon or the extreme 3' region of exon 1, and are therefore predicted to result in escape from nonsense-mediated mRNA decay. This was confirmed in fibroblasts from three individuals. We propose that the condition described here, MN1 C-terminal truncation (MCTT) syndrome, is not due to MN1 haploinsufficiency but rather is the result of dominantly acting C-terminally truncated MN1 protein. Our data show that MN1 plays a critical role in human craniofacial and brain development, and opens the door to understanding the biological mechanisms underlying rhombencephalosynapsis.status: publishe
    corecore