475 research outputs found
The potential impact of moxidectin on onchocerciasis elimination in Africa: an economic evaluation based on the Phase II clinical trial data
BACKGROUND: Spurred by success in several foci, onchocerciasis control policy in Africa has shifted from morbidity control to elimination of infection. Clinical trials have demonstrated that moxidectin is substantially more efficacious than ivermectin in effecting sustained reductions in skin microfilarial load and, therefore, may accelerate progress towards elimination. We compare the potential cost-effectiveness of annual moxidectin with annual and biannual ivermectin treatment. METHODS: Data from the first clinical study of moxidectin were used to parameterise the onchocerciasis transmission model EPIONCHO to investigate, for different epidemiological and programmatic scenarios in African savannah settings, the number of years and in-country costs necessary to reach the operational thresholds for cessation of treatment, comparing annual and biannual ivermectin with annual moxidectin treatment. RESULTS: Annual moxidectin and biannual ivermectin treatment would achieve similar reductions in programme duration relative to annual ivermectin treatment. Unlike biannual ivermectin treatment, annual moxidectin treatment would not incur a considerable increase in programmatic costs and, therefore, would generate sizeable in-country cost savings (assuming the drug is donated). Furthermore, the impact of moxidectin, unlike ivermectin, was not substantively influenced by the timing of treatment relative to seasonal patterns of transmission. CONCLUSIONS: Moxidectin is a promising new drug for the control and elimination of onchocerciasis. It has high programmatic value particularly when resource limitation prevents a biannual treatment strategy, or optimal timing of treatment relative to peak transmission season is not feasible. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13071-015-0779-4) contains supplementary material, which is available to authorized users
Freezing and chemical preservatives alter the stable isotope values of carbon and nitrogen of the Asiatic clam (Corbicula fluminea)
We tested the impacts of most common sample preservation methods used for aquatic sample materials on the stable isotope ratios of carbon and nitrogen in clams, a typical baseline indicator organism for many aquatic food web studies utilising stable isotope analysis (SIA). In addition to common chemical preservatives ethanol and formalin, we also assessed the potential impacts of freezing on ÎŽÂčÂłC and ÎŽÂčâ”N values and compared the preserved samples against freshly dried and analysed samples. All preservation methods, including freezing, had significant impacts on ÎŽÂčÂłC and ÎŽÂčâ”N values and the effects in general were greater on the carbon isotope values (1.3-2.2% difference) than on the nitrogen isotope values (0.9-1.0% difference). However, the impacts produced by the preservation were rather consistent within each method during the whole 1 year experiment allowing these to be accounted for, if clams are intended for use in retrospective stable isotope studies
The Evershed Effect with SOT/Hinode
The Solar Optical Telescope onboard Hinode revealed the fine-scale structure
of the Evershed flow and its relation to the filamentary structures of the
sunspot penumbra. The Evershed flow is confined in narrow channels with nearly
horizontal magnetic fields, embedded in a deep layer of the penumbral
atmosphere. It is a dynamic phenomenon with flow velocity close to the
photospheric sound speed. Individual flow channels are associated with tiny
upflows of hot gas (sources) at the inner end and downflows (sinks) at the
outer end. SOT/Hinode also discovered ``twisting'' motions of penumbral
filaments, which may be attributed to the convective nature of the Evershed
flow. The Evershed effect may be understood as a natural consequence of thermal
convection under a strong, inclined magnetic field. Current penumbral models
are discussed in the lights of these new Hinode observations.Comment: To appear in "Magnetic Coupling between the Interior and the
Atmosphere of the Sun", eds. S.S. Hasan and R.J. Rutten, Astrophysics and
Space Science Proceedings, Springer-Verlag, Heidelberg, Berlin, 200
Theoretical Models of Sunspot Structure and Dynamics
Recent progress in theoretical modeling of a sunspot is reviewed. The
observed properties of umbral dots are well reproduced by realistic simulations
of magnetoconvection in a vertical, monolithic magnetic field. To understand
the penumbra, it is useful to distinguish between the inner penumbra, dominated
by bright filaments containing slender dark cores, and the outer penumbra, made
up of dark and bright filaments of comparable width with corresponding magnetic
fields differing in inclination by some 30 degrees and strong Evershed flows in
the dark filaments along nearly horizontal or downward-plunging magnetic
fields. The role of magnetic flux pumping in submerging magnetic flux in the
outer penumbra is examined through numerical experiments, and different
geometric models of the penumbral magnetic field are discussed in the light of
high-resolution observations. Recent, realistic numerical MHD simulations of an
entire sunspot have succeeded in reproducing the salient features of the
convective pattern in the umbra and the inner penumbra. The siphon-flow
mechanism still provides the best explanation of the Evershed flow,
particularly in the outer penumbra where it often consists of cool, supersonic
downflows.Comment: To appear in "Magnetic Coupling between the Interior and the
Atmosphere of the Sun", eds. S.S. Hasan and R.J. Rutten, Astrophysics and
Space Science Proceedings, Springer-Verlag, Heidelberg, Berlin, 200
Identifying older diabetic patients at risk of poor glycemic control
BACKGROUND: Optimal glycemic control prevents the onset of diabetes complications. Identifying diabetic patients at risk of poor glycemic control could help promoting dedicated interventions. The purpose of this study was to identify predictors of poor short-term and long-term glycemic control in older diabetic in-patients. METHODS: A total of 1354 older diabetic in-patients consecutively enrolled in a multicenter study formed the training population (retrospective arm); 264 patients consecutively admitted to a ward of general medicine formed the testing population (prospective arm). Glycated hemoglobin (HbA1c) was measured on admission and one year after the discharge in the testing population. Independent correlates of a discharge glycemia â„ 140 mg/dl in the training population were assessed by logistic regression analysis and a clinical prediction rule was developed. The ability of the prediction rule and that of admission HbA1c to predict discharge glycemia â„ 140 mg/dl and HbA1c > 7% one year after discharge was assessed in the testing population. RESULTS: Selected admission variables (diastolic arterial pressure < 80 mmHg, glycemia = 143â218 mg/dl, glycemia > 218 mg/dl, history of insulinic or combined hypoglycemic therapy, Charlson's index > 2) were combined to obtain a score predicting a discharge fasting glycemia â„ 140 mg/dl in the training population. A modified score was obtained by adding 1 if admission HbA1c exceeded 7.8%. The modified score was the best predictor of both discharge glycemia â„ 140 mg/dl (sensitivity = 79%, specificity = 63%) and 1 year HbA1c > 7% (sensitivity = 72%, specificity = 71%) in the testing population. CONCLUSION: A simple clinical prediction rule might help identify older diabetic in-patients at risk of both short and long term poor glycemic control
Magnetic Coupling in the Quiet Solar Atmosphere
Three kinds of magnetic couplings in the quiet solar atmosphere are
highlighted and discussed, all fundamentally connected to the Lorentz force.
First the coupling of the convecting and overshooting fluid in the surface
layers of the Sun with the magnetic field. Here, the plasma motion provides the
dominant force, which shapes the magnetic field and drives the surface dynamo.
Progress in the understanding of the horizontal magnetic field is summarized
and discussed. Second, the coupling between acoustic waves and the magnetic
field, in particular the phenomenon of wave conversion and wave refraction. It
is described how measurements of wave travel times in the atmosphere can
provide information about the topography of the wave conversion zone, i.e., the
surface of equal Alfv\'en and sound speed. In quiet regions, this surface
separates a highly dynamic magnetic field with fast moving magnetosonic waves
and shocks around and above it from the more slowly evolving field of high-beta
plasma below it. Third, the magnetic field also couples to the radiation field,
which leads to radiative flux channeling and increased anisotropy in the
radiation field. It is shown how faculae can be understood in terms of this
effect. The article starts with an introduction to the magnetic field of the
quiet Sun in the light of new results from the Hinode space observatory and
with a brief survey of measurements of the turbulent magnetic field with the
help of the Hanle effect.Comment: To appear in "Magnetic Coupling between the Interior and the
Atmosphere of the Sun", eds. S.S. Hasan and R.J. Rutten, Astrophysics and
Space Science Proceedings, Springer-Verlag, Heidelberg, Berlin, 200
Pneumococcal Serotypes and Mortality following Invasive Pneumococcal Disease: A Population-Based Cohort Study
Analyzing population-based data collected over 30 years in more than 18,000 patients with invasive pneumococcal infection, Zitta Harboe and colleagues find specific pneumococcal serotypes to be associated with increased mortality
Convection and the Origin of Evershed Flows
Numerical simulations have by now revealed that the fine scale structure of
the penumbra in general and the Evershed effect in particular is due to
overturning convection, mainly confined to gaps with strongly reduced magnetic
field strength. The Evershed flow is the radial component of the overturning
convective flow visible at the surface. It is directed outwards -- away from
the umbra -- because of the broken symmetry due to the inclined magnetic field.
The dark penumbral filament cores visible at high resolution are caused by the
'cusps' in the magnetic field that form above the gaps. Still remaining to be
established are the details of what determines the average luminosity of
penumbrae, the widths, lengths, and filling factors of penumbral filaments, and
the amplitudes and filling factors of the Evershed flow. These are likely to
depend at least partially also on numerical aspects such as limited resolution
and model size, but mainly on physical properties that have not yet been
adequately determined or calibrated, such as the plasma beta profile inside
sunspots at depth and its horizontal profile, the entropy of ascending flows in
the penumbra, etc.Comment: 13 pages, 7 figures. To appear in "Magnetic Coupling between the
Interior and the Atmosphere of the Sun", eds. S.S. Hasan and R.J. Rutten,
Astrophysics and Space Science Proceedings, Springer-Verlag, Heidelberg,
Berlin, 200
- âŠ