475 research outputs found

    The potential impact of moxidectin on onchocerciasis elimination in Africa: an economic evaluation based on the Phase II clinical trial data

    Get PDF
    BACKGROUND: Spurred by success in several foci, onchocerciasis control policy in Africa has shifted from morbidity control to elimination of infection. Clinical trials have demonstrated that moxidectin is substantially more efficacious than ivermectin in effecting sustained reductions in skin microfilarial load and, therefore, may accelerate progress towards elimination. We compare the potential cost-effectiveness of annual moxidectin with annual and biannual ivermectin treatment. METHODS: Data from the first clinical study of moxidectin were used to parameterise the onchocerciasis transmission model EPIONCHO to investigate, for different epidemiological and programmatic scenarios in African savannah settings, the number of years and in-country costs necessary to reach the operational thresholds for cessation of treatment, comparing annual and biannual ivermectin with annual moxidectin treatment. RESULTS: Annual moxidectin and biannual ivermectin treatment would achieve similar reductions in programme duration relative to annual ivermectin treatment. Unlike biannual ivermectin treatment, annual moxidectin treatment would not incur a considerable increase in programmatic costs and, therefore, would generate sizeable in-country cost savings (assuming the drug is donated). Furthermore, the impact of moxidectin, unlike ivermectin, was not substantively influenced by the timing of treatment relative to seasonal patterns of transmission. CONCLUSIONS: Moxidectin is a promising new drug for the control and elimination of onchocerciasis. It has high programmatic value particularly when resource limitation prevents a biannual treatment strategy, or optimal timing of treatment relative to peak transmission season is not feasible. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13071-015-0779-4) contains supplementary material, which is available to authorized users

    Freezing and chemical preservatives alter the stable isotope values of carbon and nitrogen of the Asiatic clam (Corbicula fluminea)

    Get PDF
    We tested the impacts of most common sample preservation methods used for aquatic sample materials on the stable isotope ratios of carbon and nitrogen in clams, a typical baseline indicator organism for many aquatic food web studies utilising stable isotope analysis (SIA). In addition to common chemical preservatives ethanol and formalin, we also assessed the potential impacts of freezing on ÎŽÂčÂłC and ÎŽÂč⁔N values and compared the preserved samples against freshly dried and analysed samples. All preservation methods, including freezing, had significant impacts on ÎŽÂčÂłC and ÎŽÂč⁔N values and the effects in general were greater on the carbon isotope values (1.3-2.2% difference) than on the nitrogen isotope values (0.9-1.0% difference). However, the impacts produced by the preservation were rather consistent within each method during the whole 1 year experiment allowing these to be accounted for, if clams are intended for use in retrospective stable isotope studies

    The Evershed Effect with SOT/Hinode

    Full text link
    The Solar Optical Telescope onboard Hinode revealed the fine-scale structure of the Evershed flow and its relation to the filamentary structures of the sunspot penumbra. The Evershed flow is confined in narrow channels with nearly horizontal magnetic fields, embedded in a deep layer of the penumbral atmosphere. It is a dynamic phenomenon with flow velocity close to the photospheric sound speed. Individual flow channels are associated with tiny upflows of hot gas (sources) at the inner end and downflows (sinks) at the outer end. SOT/Hinode also discovered ``twisting'' motions of penumbral filaments, which may be attributed to the convective nature of the Evershed flow. The Evershed effect may be understood as a natural consequence of thermal convection under a strong, inclined magnetic field. Current penumbral models are discussed in the lights of these new Hinode observations.Comment: To appear in "Magnetic Coupling between the Interior and the Atmosphere of the Sun", eds. S.S. Hasan and R.J. Rutten, Astrophysics and Space Science Proceedings, Springer-Verlag, Heidelberg, Berlin, 200

    Theoretical Models of Sunspot Structure and Dynamics

    Full text link
    Recent progress in theoretical modeling of a sunspot is reviewed. The observed properties of umbral dots are well reproduced by realistic simulations of magnetoconvection in a vertical, monolithic magnetic field. To understand the penumbra, it is useful to distinguish between the inner penumbra, dominated by bright filaments containing slender dark cores, and the outer penumbra, made up of dark and bright filaments of comparable width with corresponding magnetic fields differing in inclination by some 30 degrees and strong Evershed flows in the dark filaments along nearly horizontal or downward-plunging magnetic fields. The role of magnetic flux pumping in submerging magnetic flux in the outer penumbra is examined through numerical experiments, and different geometric models of the penumbral magnetic field are discussed in the light of high-resolution observations. Recent, realistic numerical MHD simulations of an entire sunspot have succeeded in reproducing the salient features of the convective pattern in the umbra and the inner penumbra. The siphon-flow mechanism still provides the best explanation of the Evershed flow, particularly in the outer penumbra where it often consists of cool, supersonic downflows.Comment: To appear in "Magnetic Coupling between the Interior and the Atmosphere of the Sun", eds. S.S. Hasan and R.J. Rutten, Astrophysics and Space Science Proceedings, Springer-Verlag, Heidelberg, Berlin, 200

    Identifying older diabetic patients at risk of poor glycemic control

    Get PDF
    BACKGROUND: Optimal glycemic control prevents the onset of diabetes complications. Identifying diabetic patients at risk of poor glycemic control could help promoting dedicated interventions. The purpose of this study was to identify predictors of poor short-term and long-term glycemic control in older diabetic in-patients. METHODS: A total of 1354 older diabetic in-patients consecutively enrolled in a multicenter study formed the training population (retrospective arm); 264 patients consecutively admitted to a ward of general medicine formed the testing population (prospective arm). Glycated hemoglobin (HbA1c) was measured on admission and one year after the discharge in the testing population. Independent correlates of a discharge glycemia ≄ 140 mg/dl in the training population were assessed by logistic regression analysis and a clinical prediction rule was developed. The ability of the prediction rule and that of admission HbA1c to predict discharge glycemia ≄ 140 mg/dl and HbA1c > 7% one year after discharge was assessed in the testing population. RESULTS: Selected admission variables (diastolic arterial pressure < 80 mmHg, glycemia = 143–218 mg/dl, glycemia > 218 mg/dl, history of insulinic or combined hypoglycemic therapy, Charlson's index > 2) were combined to obtain a score predicting a discharge fasting glycemia ≄ 140 mg/dl in the training population. A modified score was obtained by adding 1 if admission HbA1c exceeded 7.8%. The modified score was the best predictor of both discharge glycemia ≄ 140 mg/dl (sensitivity = 79%, specificity = 63%) and 1 year HbA1c > 7% (sensitivity = 72%, specificity = 71%) in the testing population. CONCLUSION: A simple clinical prediction rule might help identify older diabetic in-patients at risk of both short and long term poor glycemic control

    Magnetic Coupling in the Quiet Solar Atmosphere

    Full text link
    Three kinds of magnetic couplings in the quiet solar atmosphere are highlighted and discussed, all fundamentally connected to the Lorentz force. First the coupling of the convecting and overshooting fluid in the surface layers of the Sun with the magnetic field. Here, the plasma motion provides the dominant force, which shapes the magnetic field and drives the surface dynamo. Progress in the understanding of the horizontal magnetic field is summarized and discussed. Second, the coupling between acoustic waves and the magnetic field, in particular the phenomenon of wave conversion and wave refraction. It is described how measurements of wave travel times in the atmosphere can provide information about the topography of the wave conversion zone, i.e., the surface of equal Alfv\'en and sound speed. In quiet regions, this surface separates a highly dynamic magnetic field with fast moving magnetosonic waves and shocks around and above it from the more slowly evolving field of high-beta plasma below it. Third, the magnetic field also couples to the radiation field, which leads to radiative flux channeling and increased anisotropy in the radiation field. It is shown how faculae can be understood in terms of this effect. The article starts with an introduction to the magnetic field of the quiet Sun in the light of new results from the Hinode space observatory and with a brief survey of measurements of the turbulent magnetic field with the help of the Hanle effect.Comment: To appear in "Magnetic Coupling between the Interior and the Atmosphere of the Sun", eds. S.S. Hasan and R.J. Rutten, Astrophysics and Space Science Proceedings, Springer-Verlag, Heidelberg, Berlin, 200

    Convection and the Origin of Evershed Flows

    Full text link
    Numerical simulations have by now revealed that the fine scale structure of the penumbra in general and the Evershed effect in particular is due to overturning convection, mainly confined to gaps with strongly reduced magnetic field strength. The Evershed flow is the radial component of the overturning convective flow visible at the surface. It is directed outwards -- away from the umbra -- because of the broken symmetry due to the inclined magnetic field. The dark penumbral filament cores visible at high resolution are caused by the 'cusps' in the magnetic field that form above the gaps. Still remaining to be established are the details of what determines the average luminosity of penumbrae, the widths, lengths, and filling factors of penumbral filaments, and the amplitudes and filling factors of the Evershed flow. These are likely to depend at least partially also on numerical aspects such as limited resolution and model size, but mainly on physical properties that have not yet been adequately determined or calibrated, such as the plasma beta profile inside sunspots at depth and its horizontal profile, the entropy of ascending flows in the penumbra, etc.Comment: 13 pages, 7 figures. To appear in "Magnetic Coupling between the Interior and the Atmosphere of the Sun", eds. S.S. Hasan and R.J. Rutten, Astrophysics and Space Science Proceedings, Springer-Verlag, Heidelberg, Berlin, 200
    • 

    corecore