20 research outputs found

    Release rates and potential fates of nitrogen and phosphorus from sediments in a eutrophic reservoir

    No full text
    SUMMARY 1. Nutrients released from lake sediments can influence water column nutrient concentrations and planktonic productivity. We examined sediment nutrient release [soluble reactive phosphorus (SRP) and ammonia (NH þ 4 )] at two sites in a eutrophic reservoir (Acton Lake, OH, U.S.A.) that differed in physical mixing conditions (a thermally stratified and an unstratified site). 2. Sediment nutrient release rates were estimated with three methods: sediment core incubations, seasonal in situ hypolimnetic accumulation and a published regression model that predicted sediment phosphorous (P) release rate from sediment P concentration. All three methods were applied to the deeper stratified site in the reservoir; however, we used only sediment core incubations to estimate SRP and NH þ 4 release rates at the shallow unstratified site because of the lack of thermal stratification. We also compared the total P concentration (TP S ) of sediments and the concentration of P in various sediment fractions at both sites. 3. Anoxic sediments at the stratified site released SRP at rates more than an order of magnitude greater than oxic sediments at the shallow unstratified site. However, P accumulated in the hypolimnion at much lower rates than predicted by sediment core incubations. In contrast, NH þ 4 was released at similar rates at both sites and accumulated in the hypolimnion at close to the expected rate, indicating that P was 'lost' from the hypolimnion through biogeochemical pathways for P, such as precipitation with inorganic material or biological uptake and sedimentation. 4. TP S was significantly greater at the deeper stratified site and organically bound P accounted for >50% of TP S at both sites. 5. We examined the magnitude of SRP fluxes into the study reservoir in 1996 by comparing the mean summer daily SRP fluxes from anaerobic sediments, aerobic sediments, stream inflows and gizzard shad excretion. While the SRP release from anaerobic sediments was high, we hypothesise that little of this SRP gained access to the epilimnion in mid-summer. SRP flux to the reservoir from aerobic sediments was less than from gizzard shad excretion and streams. Large interannual variability in thermocline stability, gizzard shad biomass and stream discharge volumes, will affect SRP loading rates from different sources in different years. Therefore, construction of P budgets for different years should account for interannual variation in these parameters

    Two-Phase Resolution of Polyploidy in the Arabidopsis Metabolic Network Gives Rise to Relative and Absolute Dosage Constraints[W]

    No full text
    Exploring successive Arabidopsis genome duplications, this work shows that the types of surviving duplicated enzymes differ between events, suggesting roles for both relative and absolute dosage constraints

    Quantitative Determination of Skin Penetration of PEG-Coated CdSe Quantum Dots in Dermabraded but not Intact SKH-1 Hairless Mouse Skin

    No full text
    Many cosmetics, sunscreens, and other consumer products are reported to contain nanoscale materials. The possible transdermal absorption of nanoscale materials and the long-term consequences of the absorption have not been determined. We used polyethylene glycol coated cadmium selenide (CdSe) core quantum dots (QD; 37 nm diameter) to evaluate the penetration of nanoscale material into intact, tape stripped, acetone treated, or dermabraded mouse skin. QD were suspended in an oil-in-water emulsion (approximately 9μM) and the emulsion was applied at 2 mg/cm2 to mouse dorsal skin pretreated as follows: intact; tape stripped to remove the stratum corneum; acetone pretreated; dermabraded to remove stratum corneum and epidermis. QD penetration into the skin was monitored in sentinel organs (liver and regional draining lymph nodes) using inductively coupled plasma mass spectrometry analysis of cadmium (from the CdSe QD). No consistent cadmium elevation was detected in the sentinel organs of mice with intact, acetone pretreated, or tape-stripped skin at 24- and 48-h post-QD application; however, in dermabraded mice, cadmium elevations were detected in the lymph nodes and liver. QD accumulation (as cadmium) in the liver was approximately 2.0% of the applied dose. The passing of QD through the dermabraded skin was confirmed using confocal fluorescence microscopy. These results suggest that transdermal absorption of nanoscale materials depends on skin barrier quality, and that the lack of an epidermis provided access to QD penetration. Future dermal risk assessments of nanoscale materials should consider key barrier aspects of skin and its overall physiologic integrity
    corecore