4 research outputs found

    A simplified control scheme for electric vehicle- power grid circuit with DC distribution and battery storage systems

    Get PDF
    Abstract: Direct current (DC) system is becoming the major trend for future internal power grid of electric vehicles (EVs). Since DC power grid system has a different nature to conventional alternating current (AC) grid system, appropriate design of the controller for EV- grid circuit is mandatory. In this paper, an EV employing a pure DC grid circuit with battery storage system (BSS) is considered as a study case. To enable a more efficient use of BSS, a flyback DC-DC converter for batteries charger/or discharger strategy is selected, which satisfy the power flows requirements. The dynamic and control performances of the combined system, i.e. “BSS- flyback DC-DC converter- connected to a DC motor”, is investigated in terms of voltage/ current signal fluctuations. The small-signal based control method is used, which limits the small-signal variations to about zero. To verify the effectiveness of the control strategy several simulations are done using Matlab. The simulation results illustrate the performances obtained

    Blockchain-Based Gas Auctioning Coupled with a Novel Economic Dispatch Formulation for Gas-Deficient Thermal Plants

    No full text
    Inadequate gas supply is partly responsible for the energy shortfall experienced in some energy-poor nations. Favorable market conditions would boost investment in the gas supply sector; hence, we propose a blockchain-based fair, transparent, and secure gas trading scheme that facilitates peer-to-peer trading of gas. The scheme is developed using an Ethereum-based smart contract that receives offers from gas suppliers and bid(s) from the thermal plant operator. Giving priority to the cheapest offers, the smart contract determines the winning suppliers. This paper also proposes an economic dispatch model for gas-deficient plants. Conventional economic dispatch seeks to satisfy electric load demand whilst minimizing the total gas cost of generating units. Implicit in its formulation is the assumption that gas supply to generating units is sufficient to satisfy available demand. In energy poor nations, this is hardly the case as there is often inadequate gas supply and conventional economic dispatch is of little practical value. The proposed economic dispatch model’s objective function maximizes the quantity of available gas and determines the optimal power output of each generating unit. The mathematical formulation is verified using data from the Egbin thermal station which is the largest thermal station in Nigeria and is solved using the General Algebraic Modeling System (GAMS). Obtained results indicate the viability of the novel approach as it results in a net power gain of 35 MW. On the other hand, the smart contract proved effective in accurately selecting winning suppliers and making payment

    Optimal design and sizing of a hybrid energy system for water pumping applications

    No full text
    Abstract One of the ways to increase the participation and penetration of renewable energy resources is to bring down the cost of these abundant resources for easy implementation and affordability. In this paper, a generalized reduced gradient (GRG) non‐linear optimization algorithm is implemented to solve a tri‐objective optimal design and sizing of a low‐cost hybrid mix consisting of a photovoltaic (PV) power plant, biomass power plant (BPP), and battery energy system for water pumping load applications in the University of Johannesburg, South Africa considering four different hybrids of biomass‐battery, PV‐battery, PV‐biomass, and PV‐biomass‐battery. The optimization model considers available energy and battery state of charge while minimizing least cost of energy (LCOE), carbon dioxide emission (tCO2eq), and loss of power supply probability (LPSP) including carbon tax incentive and penalty. The results when compared against particle swarm optimization (PSO) show the superiority of GRG over PSO with an optimal combination of PV‐biomass‐battery mix with optimal size of the PV power plant as 360.50 kW, the BPP 181.08 kW, and the battery size of 6,553.60 kWh giving a minimal optimal LCOE, CO2 emission and LPSP of 0.018 /kWhr(withcarbontax),and0.016/kWhr (with carbon tax), and 0.016 /kWhr (without carbon tax), 28,067.73tCO2eq tCO2eq, and 1.7%, respectively. These values give a competitive advantage compared to the unit cost and values of CO2 emission and LPSP currently in the literature

    Analysis of the Productivity Dynamics of Electricity Distribution Regions in Ghana

    No full text
    Electrical power distribution is the most important division in the power supply chain. However, its sustainability in terms of efficiency is very important for the growth of every country. This main objective of the paper is to assess the productivity dynamics of this process using the data envelopment analysis (DEA) methodology to analyse the effectiveness of the electricity distribution regions (EDRs) over a period of 7 years. The paper adapts the biennial Malmquist productivity index by infusing it with the slacks-based measure (SBM) to assess the productivity dynamics of EDRs in Ghana. Productivity dynamics were assessed by decomposing the SBM-BMPI productivity scores into the efficiency, technology, and scale change. It was discovered that the productivity of EDRs in Ghana progressed by 16.23% per annum over the sample period. Productivity was driven mainly by technological change and not the efficiency changes and scale changes
    corecore