144 research outputs found

    Different epigenetic states define syncytiotrophoblast and cytotrophoblast nuclei in the trophoblast of the human placenta.

    Get PDF
    INTRODUCTION: The syncytiotrophoblast (STB) epithelial covering of the villous tree in the human placenta is a multi-nucleated syncytium that is sustained by continuous incorporation of differentiating cytotrophoblast (CTB) cells. STB nuclei display a variety of morphologies, but are generally more condensed in comparison to CTB nuclei. Here, we consider whether this condensation is a feature of epigenetic regulation of chromatin structure. METHODS: Semi-quantitative immunohistochemical investigations of a panel of histone modifications were performed to determine the relative proportions in CTB and STB nuclear populations. We also investigated the patterns of DNA methylation and distribution of DNA methyltransferases enzymes in these populations. RESULTS: Unexpectedly DNA methylation, and H3K9me3 and H3K27me3, which are modifications associated with heterochromatin, are present at lower levels in STB nuclei compared to CTB, despite the intensive condensation in the former nuclear population and the progenitor state of the latter. By contrast, STB nuclei are enriched for H4K20me3, which is also associated with repressive states. 5'hydroxymethylcytosine immunoreactivity is higher in STB, with intense staining observed in the highly condensed nuclei within syncytial knots. DISCUSSION: Cell-type specific epigenetic states exist within the trophoblast populations potentially regulating their different functions and developmental properties and suggesting non-canonical epigenetic states associated with the properties of these cells.This work was funded by a studentship from the Anatomical Society of Great Britain and Ireland. The study was also supported by the Centre for Trophoblast Research.This is the accepted manuscript. The final version is available at http://www.sciencedirect.com/science/article/pii/S0143400415009248

    The role of magnetospheric plasma instabilities in auroral and substorm dynamics

    Get PDF
    The auroral substorm is the manifestation of explosive energy release from the rapid and global reconfiguration of the magnetotail. The auroral substorm is marked by a sudden brightening and poleward expansion of the most equatorward auroral arc in the midnight sector of the ionosphere. The temporal sequence of magnetospheric processes which lead to the dynamic auroral substorm display remain disputed to this day. This thesis contains original research on the development and exploitation of novel data analysis techniques in order to analyse ground-based all sky imager data of the aurora, enabling the study of substorm processes in remarkable detail. Fourier analysis techniques are used to find the spatial scales of wave-like signatures (otherwise known as auroral beads/rays), which form along substorm onset arcs. Growth rates of ∼0.05 s⁻¹ are found from the exponential growth of the power spectral density of individual spatial scales. By analysing the dataset in this way, comparisons are made between observations and theoretical predictions of plasma instabilities at the near-Earth edge of the plasma-sheet which have been proposed to play a critical part in the substorm onset process. Auroral arc tracking techniques are developed to automate and increase the size of the database of events analysed. The vast majority of independently identified substorm onsets are preceded by azimuthal structuring along the onset arc with median wavelengths of ∼80 km. These beads grow and develop into a magnetospheric instability around 2 minutes prior to auroral substorm onset. Showing that beads are a common feature along the substorm onset arc provides unprecedented quantitative evidence that a near-Earth instability is a fundamental component of the substorm onset process. Finally, analysis techniques are extended to state-of-the-art high resolution multi-spectral auroral data to investigate the processes driving auroral beads. Beads can be resolved in the green-, blue- and red-line aurora with spatial scales as small as 30 km, which later develop into larger structures of ∼80 km. These observations are consistent with Alfvén wave accelerated auroral particle precipitation and therefore imply that the substorm onset arc and auroral beads are driven unstable by waves

    Statistical azimuthal structuring of the substorm onset arc: Implications for the onset mechanism

    Get PDF
    The onset of an auroral substorm is generally thought to occur on a quiet, homogeneous auroral arc. We present a statistical study of independently selected substorm onset arcs and find that over 90% of the arcs studied have resolvable characteristic spatial scales in the form of auroral beads. We find that the vast majority (~88%) of auroral beads have small amplitudes relative to the background, making them invisible without quantitative analysis. This confirms that auroral beads are highly likely to be ubiquitous to all onset arcs, rather than a special case phenomena as previously thought. Moreover, as these auroral beads grow exponentially through onset, we conclude that a magnetospheric plasma instability is fundamental to substorm onset itself

    Design of the NL-ENIGMA study: Exploring the effect of Souvenaid on cerebral glucose metabolism in early Alzheimer's disease

    Get PDF
    Alzheimer's disease is associated with early synaptic loss. Specific nutrients are known to be rate limiting for synapse formation. Studies have shown that administering specific nutrients may improve memory function, possibly by increasing synapse formation. This Dutch study explores the Effect of a specific Nutritional Intervention on cerebral Glucose Metabolism in early Alzheimer's disease (NL-ENIGMA, Dutch Trial Register NTR4718, http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=4718). The NL-ENIGMA study is designed to test whether the specific multinutrient combination Fortasyn Connect present in the medical food Souvenaid influences cerebral glucose metabolism as a marker for improved synapse function. Methods This study is a double-blind, randomized controlled parallel-group single-center trial. Forty drug-naive patients with mild cognitive impairment or mild dementia with evidence of amyloid deposition are 1:1 randomized to receive either the multinutrient combination or placebo once daily. Main exploratory outcome parameters include absolute quantitative positron emission tomography with 18F-fluorodeoxyglucose (including arterial sampling) and standard uptake value ratios normalized for the cerebellum or pons after 24 weeks. Discussion We expect the NL-ENIGMA study to provide further insight in the potential of this multinutrient combination to improve synapse function

    Genomic analysis of the secretion stress response in the enzyme-producing cell factory Aspergillus niger

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Filamentous fungi such as <it>Aspergillus niger </it>have a high capacity secretory system and are therefore widely exploited for the industrial production of native and heterologous proteins. However, in most cases the yields of non-fungal proteins are significantly lower than those obtained for fungal proteins. One well-studied bottleneck appears to be the result of mis-folding of heterologous proteins in the ER during early stages of secretion, with related stress responses in the host, including the unfolded protein response (UPR). This study aims at uncovering transcriptional and translational responses occurring in <it>A. niger </it>exposed to secretion stress.</p> <p>Results</p> <p>A genome-wide transcriptional analysis of protein secretion-related stress responses was determined using Affymetrix DNA GeneChips and independent verification for selected genes. Endoplasmic reticulum (ER)-associated stress was induced either by chemical treatment of the wild-type cells with dithiothreitol (DTT) or tunicamycin, or by expressing a human protein, tissue plasminogen activator (t-PA). All of these treatments triggered the UPR, as shown by the expression levels of several well-known UPR target genes. The predicted proteins encoded by most of the up-regulated genes function as part of the secretory system including chaperones, foldases, glycosylation enzymes, vesicle transport proteins, and ER-associated degradation proteins. Several genes were down-regulated under stress conditions and these included several genes that encode secreted enzymes. Moreover, translational regulation under ER stress was investigated by polysomal fractionation. This analysis confirmed the post-transcriptional control of <it>hacA </it>expression and highlighted that differential translation also occurs during ER stress, in particular for some genes encoding secreted proteins or proteins involved in ribosomal biogenesis and assembly.</p> <p>Conclusion</p> <p>This is first genome-wide analysis of both transcriptional and translational events following protein secretion stress. Insight has been gained into the molecular basis of protein secretion and secretion-related stress in an effective protein-secreting fungus, and provides an opportunity to identify target genes for manipulation in strain improvement strategies.</p

    The Triggering of the 2014 March 29 Filament Eruption

    Get PDF
    The X1 flare and associated filament eruption occurring in NOAA Active Region 12017 on SOL2014-03-29 has been a source of intense study. In this work, we analyze the results of a series of nonlinear force-free field extrapolations of the flare's pre- and post-flare periods. In combination with observational data provided by the IRIS, Hinode, and Solar Dynamics Observatory missions, we have confirmed the existence of two flux ropes present within the active region prior to flaring. Of these two flux ropes, we find that intriguingly only one erupts during the X1 flare. We propose that the reason for this is due to tether cutting reconnection allowing one of the flux ropes to rise to a torus unstable region prior to flaring, thus allowing it to erupt during the subsequent flare

    Exploring effects of Souvenaid on cerebral glucose metabolism in Alzheimer's disease

    Get PDF
    Introduction Alzheimer's disease (AD) is associated with synapse loss. Souvenaid, containing the specific nutrient combination Fortasyn Connect, was designed to improve synapse formation and function. The NL-ENIGMA study explored the effect of Souvenaid on synapse function in early AD by assessing cerebral glucose metabolism (CMRglc) with 18F-fluorodeoxyglucose ([18F]FDG) positron emission tomography (PET). Methods We conducted an exploratory double-blind randomized controlled single-center trial. Fifty patients with mild cognitive impairment or mild dementia with evidence of amyloid pathology (cerebrospinal fluid or PET) were stratified for MMSE (20–24 and 25–30) and randomly 1:1 allocated to 24-week daily administration of 125 mL Souvenaid (n = 25) or placebo (n = 25). Dynamic 60-minute [18F]FDG-PET scans (21 frames) with arterial sampling were acquired at baseline and 24 weeks. CMRglc was estimated by quantitative (Ki) and semiquantitative (standardized uptake value ratio, reference cerebellar gray matter) measurements in five predefined regions of interest and a composite region of interest. Change from baseline in CMRglc was compared between treatment groups by analysis of variance, adjusted for baseline CMRglc and MMSE stratum. Additional exploratory outcome parameters included voxel-based analyses by Statistical Parametric Mapping. Results No baseline differences between treatment groups were found (placebo/intervention: n = 25/25; age 66 ± 8/65 ± 7 years; female 44%/48%; MMSE 25 ± 3/25 ± 3). [18F]FDG-PET data were available for quantitative (placebo n = 19, intervention n = 18) and semiquantitative (placebo n = 20, intervention n = 22) analyses. At follow-up, no change within treatment groups and no statistically significant difference in change between treatment groups in CMRglc in any regions of interest were found by both quantitative and semiquantitative analyses. No treatment effect was found in the cerebellar gray matter using quantitative measures. The additional Statistical Parametric Mapping analyses did not yield consistent differences between treatment groups. Discussion In this exploratory trial, we found no robust effect of 24-week intervention with Souvenaid on synapse function measured by [18F]FDG-PET. Possible explanations include short duration of treatment

    Conditional Gene Knockout in Human Cells with Inducible CRISPR/Cas9.

    Get PDF
    The advent of the easily programmable and efficient CRISPR/Cas9 nuclease system has revolutionized genetic engineering. While conventional gene knockout experiments using CRISPR/Cas9 are very valuable, these are not well suited to study stage-specific gene function in dynamic situations such as development or disease. Here we describe a CRISPR/Cas9-based OPTimized inducible gene KnockOut method (OPTiKO) for conditional loss-of-function studies in human cells. This approach relies on an improved tetracycline-inducible system for conditional expression of single guide RNAs (sgRNAs) that drive Cas9 activity. In order to ensure homogeneous and stable expression, the necessary transgenes are expressed following rapid and efficient single-step genetic engineering of the AAVS1 genomic safe harbor. When implemented in human pluripotent stem cells (hPSCs), the approach can be then efficiently applied to virtually any hPSC-derived human cell type at various stages of development or disease
    corecore