732 research outputs found

    From waste cooking oil to oxygen-rich onion-like nanocarbons for the removal of hexavalent chromium from aqueous solutions

    Get PDF
    Vegetable cooking oil is used in domestic and commercial kitchens owing to its ability to modify and enhance the taste of the food through the frying process. However, as the oil is used through several frying cycles, it changes colour to dark brown and acquires an unpleasant smell. At this point, the waste oil is usually discarded, thereby finding its way into freshwater streams due to poor disposal and thus becoming an environmental pollutant. To provide an alternative, ‘green’ route to waste oil disposal, herein we report on the metal-free synthesis of onion-like nanocarbons (OLNCs) made from waste cooking oil via flame pyrolysis. The OLNCs were then applied in the removal of hexavalent chromium ions from aqueous solutions. The as-synthesised OLNCs were found to have similar properties (size, quasi-spherical shape etc.) to those synthesised from pure cooking oils. The Fourier-transform infrared spectroscopy data showed that the OLNCs contained C-O-type moieties which were attributed to the oxygenation process that took place during the cooking process. The OLNCs from waste oil were applied as an adsorbent for Cr(VI) and showed optimal removal conditions at pH = 2, t = 360 min, Co = 10 mg/L and Q0max = 47.62 mg/g, superior to data obtained from OLNCs prepared from pristine cooking oil. The results showed that the OLNCs derived from the waste cooking oil were effective in the removal of hexavalent chromium. Overall, this study shows how to repurpose an environmental pollutant (waste cooking oil) as an effective adsorbent for pollutant (Cr(VI)) removal. Significance: • Waste cooking oil outperformed olive oil as a starting material for the production of OLNCs for the removal of toxic Cr(VI) from water. • The superior performance of the OLNCs from waste cooking oil was attributed to the higher oxygen content found on their surface and acquired through the cooking process. • Not only are the OLNCs produced from waste cooking oil effective in the removal of Cr(VI), but they can be used multiple times before replacement, which makes them sustainable

    Measurement of exclusive pion pair production in proton–proton collisions at √s=7 TeV with the ATLAS detector

    Get PDF
    The exclusive production of pion pairs in the process pp→ ppπ+π- has been measured at s=7TeV with the ATLAS detector at the LHC, using 80μb-1 of low-luminosity data. The pion pairs were detected in the ATLAS central detector while outgoing protons were measured in the forward ATLAS ALFA detector system. This represents the first use of proton tagging to measure an exclusive hadronic final state at the LHC. A cross-section measurement is performed in two kinematic regions defined by the proton momenta, the pion rapidities and transverse momenta, and the pion–pion invariant mass. Cross-section values of 4.8±1.0(stat)-0.2+0.3(syst)μb and 9±6(stat)-2+2(syst)μb are obtained in the two regions; they are compared with theoretical models and provide a demonstration of the feasibility of measurements of this type

    Measurement of vector boson production cross sections and their ratios using pp collisions at s=13.6 TeV with the ATLAS detector

    Get PDF

    Search for non-resonant Higgs boson pair production in the 2b+2l+ETmiss final state in pp collisions at s = 13 TeV with the ATLAS detector

    Get PDF
    A search for non-resonant Higgs boson pair (HH) production is presented, in which one of the Higgs bosons decays to a b-quark pair (bb ̄) and the other decays to WW*, ZZ*, or τ+τ−, with in each case a final state with l+l−+ neutrinos (l = e, μ). The analysis targets separately the gluon-gluon fusion and vector boson fusion production modes. Data recorded by the ATLAS detector in proton-proton collisions at a centre-of-mass energy of 13 TeV at the Large Hadron Collider, corresponding to an integrated luminosity of 140 fb−1, are used in this analysis. Events are selected to have exactly two b-tagged jets and two leptons with opposite electric charge and missing transverse momentum in the final state. These events are classified using multivariate analysis algorithms to separate the HH events from other Standard Model processes. No evidence of the signal is found. The observed (expected) upper limit on the cross-section for non-resonant Higgs boson pair production is determined to be 9.7 (16.2) times the Standard Model prediction at 95% confidence level. The Higgs boson self-interaction coupling parameter κλ and the quadrilinear coupling parameter κ2V are each separately constrained by this analysis to be within the ranges [−6.2, 13.3] and [−0.17, 2.4], respectively, at 95% confidence level, when all other parameters are fixed

    Studies of new Higgs boson interactions through nonresonant HH production in the b¯bγγ fnal state in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    A search for nonresonant Higgs boson pair production in the b ¯bγγ fnal state is performed using 140 fb−1 of proton-proton collisions at a centre-of-mass energy of 13 TeV recorded by the ATLAS detector at the CERN Large Hadron Collider. This analysis supersedes and expands upon the previous nonresonant ATLAS results in this fnal state based on the same data sample. The analysis strategy is optimised to probe anomalous values not only of the Higgs (H) boson self-coupling modifer κλ but also of the quartic HHV V (V = W, Z) coupling modifer κ2V . No signifcant excess above the expected background from Standard Model processes is observed. An observed upper limit µHH < 4.0 is set at 95% confdence level on the Higgs boson pair production cross-section normalised to its Standard Model prediction. The 95% confdence intervals for the coupling modifers are −1.4 < κλ < 6.9 and −0.5 < κ2V < 2.7, assuming all other Higgs boson couplings except the one under study are fxed to the Standard Model predictions. The results are interpreted in the Standard Model efective feld theory and Higgs efective feld theory frameworks in terms of constraints on the couplings of anomalous Higgs boson (self-)interactions

    Measurement of ZZ production cross-sections in the four-lepton final state in pp collisions at √s = 13.6 TeV with the ATLAS experiment

    Get PDF

    Measurement of the H → γ γ and H → ZZ∗ → 4 cross-sections in pp collisions at √s = 13.6 TeV with the ATLAS detector

    Get PDF
    The inclusive Higgs boson production cross section is measured in the di-photon and the Z Z∗ → 4 decay channels using 31.4 and 29.0 fb−1 of pp collision data respectively, collected with the ATLAS detector at a centre of-mass energy of √s = 13.6 TeV. To reduce the model dependence, the measurement in each channel is restricted to a particle-level phase space that closely matches the chan nel’s detector-level kinematic selection, and it is corrected for detector effects. These measured fiducial cross-sections are σfid,γ γ = 76+14 −13 fb, and σfid,4 = 2.80 ± 0.74 fb, in agreement with the corresponding Standard Model predic tions of 67.6±3.7 fb and 3.67±0.19 fb. Assuming Standard Model acceptances and branching fractions for the two chan nels, the fiducial measurements are extrapolated to the full phase space yielding total cross-sections of σ (pp → H) = 67+12 −11 pb and 46±12 pb at 13.6 TeV from the di-photon and Z Z∗ → 4 measurements respectively. The two measure ments are combined into a total cross-section measurement of σ (pp → H) = 58.2±8.7 pb, to be compared with the Stan dard Model prediction of σ (pp → H)SM = 59.9 ± 2.6 p

    Electron and photon energy calibration with the ATLAS detector using LHC Run 2 data

    Get PDF
    This paper presents the electron and photon energy calibration obtained with the ATLAS detector using 140 fb−1 of LHC proton-proton collision data recorded at root(s) = 13 TeV between 2015 and 2018. Methods for the measurement of electron and photon energies are outlined, along with the current knowledge of the passive material in front of the ATLAS electromagnetic calorimeter. The energy calibration steps are discussed in detail, with emphasis on the improvements introduced in this paper. The absolute energy scale is set using a large sample of Z-boson decays into electron-positron pairs, and its residual dependence on the electron energy is used for the first time to further constrain systematic uncertainties. The achieved calibration uncertainties are typically 0.05% for electrons from resonant Z-boson decays, 0.4% at ET tilde 10 GeV, and 0.3% at ET tilde 1 TeV; for photons at ET tilde 60 GeV, they are 0.2% on average. This is more than twice as precise as the previous calibration. The new energy calibration is validated using J/psi -> ee and radiative Z-boson decays

    Azimuthal Angle Correlations of Muons Produced via Heavy-Flavor Decays in 5.02 TeV Pb + Pb and pp Collisions with the ATLAS Detector

    Get PDF

    Measurement of the Z boson invisible width at s=13 TeV with the ATLAS detector

    Get PDF
    corecore