5 research outputs found

    Data Analysis and Visualization with Google Data Studio

    Get PDF
    As part of an Information Systems course a project was created to illustrate how Google Data Studio can play a role in improving the analysis and visualization of data. Often practitioners interact with data from already existing databases or datasets and need to make sense of them before analyzing, visualizing and gleaning insights from them. The dataset used in this case is retrieved from the w3schools learn SQL online course. A query is written to extract the data, and the data is imported to Google Sheets for visualization with Google Data studio. The process enables the identification of data anomalies, the analysis of trends, visualization of outliers and creation of additional data to gain further insights. This process reduces the time of analysis and provides students with insights on the life cycle of data analysis from business understanding, to data understanding and back to business understanding. Further, results that may be expected such as performance of employees, products or vendors is reviewed in more detail to gain further insights

    KILchip v1.0: A Novel Plasmodium falciparum Merozoite Protein Microarray to Facilitate Malaria Vaccine Candidate Prioritization.

    Get PDF
    Passive transfer studies in humans clearly demonstrated the protective role of IgG antibodies against malaria. Identifying the precise parasite antigens that mediate immunity is essential for vaccine design, but has proved difficult. Completion of the Plasmodium falciparum genome revealed thousands of potential vaccine candidates, but a significant bottleneck remains in their validation and prioritization for further evaluation in clinical trials. Focusing initially on the Plasmodium falciparum merozoite proteome, we used peer-reviewed publications, multiple proteomic and bioinformatic approaches, to select and prioritize potential immune targets. We expressed 109 P. falciparum recombinant proteins, the majority of which were obtained using a mammalian expression system that has been shown to produce biologically functional extracellular proteins, and used them to create KILchip v1.0: a novel protein microarray to facilitate high-throughput multiplexed antibody detection from individual samples. The microarray assay was highly specific; antibodies against P. falciparum proteins were detected exclusively in sera from malaria-exposed but not malaria-naïve individuals. The intensity of antibody reactivity varied as expected from strong to weak across well-studied antigens such as AMA1 and RH5 (Kruskal-Wallis H test for trend: p < 0.0001). The inter-assay and intra-assay variability was minimal, with reproducible results obtained in re-assays using the same chip over a duration of 3 months. Antibodies quantified using the multiplexed format in KILchip v1.0 were highly correlated with those measured in the gold-standard monoplex ELISA [median (range) Spearman's R of 0.84 (0.65-0.95)]. KILchip v1.0 is a robust, scalable and adaptable protein microarray that has broad applicability to studies of naturally acquired immunity against malaria by providing a standardized tool for the detection of antibody correlates of protection. It will facilitate rapid high-throughput validation and prioritization of potential Plasmodium falciparum merozoite-stage antigens paving the way for urgently needed clinical trials for the next generation of malaria vaccines

    KILchip v1.0: A Novel Plasmodium falciparum Merozoite Protein Microarray to Facilitate Malaria Vaccine Candidate Prioritization

    Get PDF
    Passive transfer studies in humans clearly demonstrated the protective role of IgG antibodies against malaria. Identifying the precise parasite antigens that mediate immunity is essential for vaccine design, but has proved difficult. Completion of the Plasmodium falciparum genome revealed thousands of potential vaccine candidates, but a significant bottleneck remains in their validation and prioritization for further evaluation in clinical trials. Focusing initially on the Plasmodium falciparum merozoite proteome, we used peer-reviewed publications, multiple proteomic and bioinformatic approaches, to select and prioritize potential immune targets. We expressed 109 P. falciparum recombinant proteins, the majority of which were obtained using a mammalian expression system that has been shown to produce biologically functional extracellular proteins, and used them to create KILchip v1.0: a novel protein microarray to facilitate high-throughput multiplexed antibody detection from individual samples.The microarray assay was highly specific; antibodies against P. falciparum proteins were detected exclusively in sera from malaria-exposed but not malaria-naïve individuals. The intensity of antibody reactivity varied as expected from strong to weak across well-studied antigens such as AMA1 and RH5 (Kruskal–Wallis H test for trend: p &lt; 0.0001). The inter-assay and intra-assay variability was minimal, with reproducible results obtained in re-assays using the same chip over a duration of 3 months. Antibodies quantified using the multiplexed format in KILchip v1.0 were highly correlated with those measured in the gold-standard monoplex ELISA [median (range) Spearman's R of 0.84 (0.65–0.95)]. KILchip v1.0 is a robust, scalable and adaptable protein microarray that has broad applicability to studies of naturally acquired immunity against malaria by providing a standardized tool for the detection of antibody correlates of protection. It will facilitate rapid high-throughput validation and prioritization of potential Plasmodium falciparum merozoite-stage antigens paving the way for urgently needed clinical trials for the next generation of malaria vaccines

    Home Field Advantage in Major League Soccer

    No full text
    This study examined how Information Systems and Technology can play a role in improving the understanding of Home Field Advantage (HFA) in the U.S. Major League Soccer (MLS). The study validates the existence of HFA in MLS, and quantifies its impact on teams’ performance as reflected by their match statistics. During the period under review, 2012 – 2017, the MLS had an average HFA of 67%, with the highest being 72%. Assists, Crosses, and Shots on Target had a significant correlation with Home Goal Difference. Using Action Design Research, an IT artifact was developed in collaboration with the Philadelphia Union (Union) a soccer club of the MLS. This artifact/application allows for comparison of MLS teams across various match statistics. Three clusters of teams were identified based on match statistics that were statistically significant

    Childhood growth during recovery from acute illness in Africa and South Asia: a secondary analysis of the childhood acute illness and nutrition (CHAIN) prospective cohortResearch in context

    No full text
    Summary: Background: Growth faltering is well-recognized during acute childhood illness and growth acceleration during convalescence, with or without nutritional therapy, may occur. However, there are limited recent data on growth after hospitalization in low- and middle-income countries. Methods: We evaluated growth following hospitalization among children aged 2–23 months in sub-Saharan Africa and South Asia. Between November 2016 and January 2019, children were recruited at hospital admission and classified as: not-wasted (NW), moderately-wasted (MW), severely-wasted (SW), or having nutritional oedema (NO). We describe earlier (discharge to 45-days) and later (45- to 180-days) changes in length-for-age [LAZ], weight-for-age [WAZ], mid-upper arm circumference [MUACZ], weight-for-length [WLZ] z-scores, and clinical, nutritional, and socioeconomic correlates. Findings: We included 2472 children who survived to 180-days post-discharge: NW, 960 (39%); MW, 572 (23%); SW, 682 (28%); and NO, 258 (10%). During 180-days, LAZ decreased in NW (−0.27 [−0.36, −0.19]) and MW (−0.23 [−0.34, −0.11]). However, all groups increased WAZ (NW, 0.21 [95% CI: 0.11, 0.32]; MW, 0.57 [0.44, 0.71]; SW, 1.0 [0.88, 1.1] and NO, 1.3 [1.1, 1.5]) with greatest gains in the first 45-days. Of children underweight (<−2 WAZ) at discharge, 66% remained underweight at 180-days. Lower WAZ post-discharge was associated with age-inappropriate nutrition, adverse caregiver characteristics, small size at birth, severe or moderate anaemia, and chronic conditions, while lower LAZ was additionally associated with household-level exposures but not with chronic medical conditions. Interpretation: Underweight and poor linear growth mostly persisted after an acute illness. Beyond short-term nutritional supplementation, improving linear growth post-discharge may require broader individual and family support. Funding: Bill &amp; Melinda Gates Foundation OPP1131320; National Institute for Health Research NIHR201813
    corecore