4 research outputs found

    Influence of planetary boundary layer (PBL) parameterizations in the weather research and forecasting (WRF) model on the retrieval of surface meteorological variables over the Kenyan highlands

    Get PDF
    Regional climate models (RCMs) are crucial for climate studies and may be an alternative source of meteorological data in data‐scarce regions. However, the effectiveness of the numerical weather prediction (NWP) models applied in RCMs is hampered by the parameterization of unresolved physical processes in the model. A major source of uncertainties in NWP models is the parameterization of the planetary boundary layer (PBL). This study evaluates the influence of seven PBL parameterization schemes in the Weather Research and Forecasting (WRF) model on the retrieval of four meteorological variables over the Kenyan highlands. The seven PBL schemes consist of four local schemes: the Mellor‐Yamada‐Janjic (MYJ), Mellor‐Yamada‐Nakanishi‐Niino (MYNN), Bougeault‐Lacarrere (BouLac), quasinormal scale elimination (QNSE), and three nonlocal schemes: asymmetrical convective model version 2 (ACM2), Shin and Hong (SHIN) and Yonsei University (YSU). The forcing data for the WRF model was obtained from the fifth generation of the European ReAnalysis (ERA5) dataset. The results were validated against observational data from the Trans‐ African Hydro‐Meteorological Observatory (TAHMO). WRF was found to simulate surface meteorological variables with spatial details coherent with the complex topography within the Kenyan highlands, irrespective of the PBL scheme. A comparison between 2‐meter temperature (T2) derived from the YSU scheme and T2 from the land component of ERA5 (ERA5‐Land) indicates that surface meteorological variables derived from WRF are better suited for applications over the Kenyan highlands. The choice of the PBL scheme was found to primarily influence the simulation of the 10‐meter wind speed (WS10) and rainfall as opposed to T2 and the 2‐meter relative humidity (RH2). The insensitivity of the 2‐meter variables to the choice of the PBL scheme is attributed to the influence of the surface layer parameterization near the surface. Results from the rainfall simulation indicate that the YSU scheme provides a more realistic depiction of PBL dynamics within the study area. Hence, the YSU scheme is best suited for simulating surface meteorological variables over the Kenyan highlands. Keywords: RCMs; NWP; planetary boundary layer; parameterization; WRF; Kenyan highland

    Evaluation of WaPOR V2 evapotranspiration products across Africa

    No full text
    The Food and Agricultural Organization of the United Nations (FAO) portal to monitor water productivity through open‐access of remotely sensed derived data (WaPOR) offers continuous actual evapotranspiration and interception (ETIa‐WPR) data at a 10‐day basis across Africa and the Middle East from 2009 onwards at three spatial resolutions. The continental level (250 m) covers Africa and the Middle East (L1). The national level (100 m) covers 21 countries and 4 river basins (L2). The third level (30 m) covers eight irrigation areas (L3). To quantify the uncertainty of WaPOR version 2 (V2.0) ETIa‐WPR in Africa, we used a number of validation methods. We checked the physical consistency against water availability and the long‐term water balance and then verify the continental spatial and temporal trends for the major climates in Africa. We directly validated ETIa‐WPR against in situ data of 14 eddy covariance stations (EC). Finally, we checked the level consistency between the different spatial resolutions. Our findings indicate that ETIa‐WPR is performing well, but with some noticeable overestimation. The ETIa‐WPR is showing expected spatial and temporal consistency with respect to climate classes. ETIa‐WPR shows mixed results at point scale as compared to EC flux towers with an overall correlation of 0.71, and a root mean square error of 1.2 mm/day. The level consistency is very high between L1 and L2. However, the consistency between L1 and L3 varies significantly between irrigation areas. In rainfed areas, the ETIa‐WPR is overestimating at low ETIa‐WPR and underestimating when ETIa is high. In irrigated areas, ETIa‐WPR values appear to be consistently overestimating ETa. The relative soil moisture content (SMC), the input of quality layers and local advection effects were some of the identified causes. The quality assessment of ETIa‐WPR product is enhanced by combining multiple evaluation methods. Based on the results, the ETIa‐WPR dataset is of enough quality to contribute to the understanding and monitoring of local and continental water processes and water management

    The ASOS Surgical Risk Calculator: development and validation of a tool for identifying African surgical patients at risk of severe postoperative complications

    No full text
    Background: The African Surgical Outcomes Study (ASOS) showed that surgical patients in Africa have a mortality twice the global average. Existing risk assessment tools are not valid for use in this population because the pattern of risk for poor outcomes differs from high-income countries. The objective of this study was to derive and validate a simple, preoperative risk stratification tool to identify African surgical patients at risk for in-hospital postoperative mortality and severe complications. Methods: ASOS was a 7-day prospective cohort study of adult patients undergoing surgery in Africa. The ASOS Surgical Risk Calculator was constructed with a multivariable logistic regression model for the outcome of in-hospital mortality and severe postoperative complications. The following preoperative risk factors were entered into the model; age, sex, smoking status, ASA physical status, preoperative chronic comorbid conditions, indication for surgery, urgency, severity, and type of surgery. Results: The model was derived from 8799 patients from 168 African hospitals. The composite outcome of severe postoperative complications and death occurred in 423/8799 (4.8%) patients. The ASOS Surgical Risk Calculator includes the following risk factors: age, ASA physical status, indication for surgery, urgency, severity, and type of surgery. The model showed good discrimination with an area under the receiver operating characteristic curve of 0.805 and good calibration with c-statistic corrected for optimism of 0.784. Conclusions: This simple preoperative risk calculator could be used to identify high-risk surgical patients in African hospitals and facilitate increased postoperative surveillance. © 2018 British Journal of Anaesthesia. Published by Elsevier Ltd. All rights reserved.Medical Research Council of South Africa gran
    corecore