32 research outputs found

    Variability in springtime thaw in the terrestrial high latitudes: Monitoring a major control on the biospheric assimilation of atmospheric CO2 with spaceborne microwave remote sensing

    Get PDF
    Evidence is presented from the satellite microwave remote sensing record that the timing of seasonal thawing and subsequent initiation of the growing season in early spring has advanced by approximately 8 days from 1988 to 2001 for the pan-Arctic basin and Alaska. These trends are highly variable across the region, with North America experiencing a larger advance relative to Eurasia and the entire region. Interannual variability in the timing of spring thaw as detected from the remote sensing record corresponded directly to seasonal anomalies in mean atmospheric CO2 concentrations for the region, including the timing of the seasonal draw down of atmospheric CO2 from terrestrial net primary productivity (NPP) in spring, and seasonal maximum and minimum CO2 concentrations. The timing of the seasonal thaw for a given year was also found to be a significant (P \u3c 0.01) predictor of the seasonal amplitude of atmospheric CO2 for the following year. These results imply that the timing of seasonal thawing in spring has a major impact on terrestrial NPP and net carbon exchange at high latitudes. The initiation of the growing season has also been occurring earlier, on average, over the time period addressed in this study and may be a major mechanism driving observed atmospheric CO2 seasonal cycle advances, vegetation greening, and enhanced productivity for the northern high latitudes

    Electrodynamics of Media

    Get PDF
    Contains research objectives and summary of research on three projects and reports on five research projects.Joint Services Electronics Program (Contract DAAB07-74-C-0630)California Institute of Technology (Contract 953524

    Fostering Application Opportunites for the NASA Soil Moisture Active Passive (SMAP) Mission

    Get PDF
    The NASA Soil Moisture Active Passive (SMAP) Mission will provide global observations of soil moisture and freeze/thaw state from space. We outline how priority applications contributed to the SMAP mission measurement requirements and how the SMAP mission plans to foster applications and applied science

    Satellite-observed changes in vegetation sensitivities to surface soil moisture and total water storage variations since the 2011 Texas drought

    Get PDF
    We combine soil moisture (SM) data from AMSR-E and AMSR-2, and changes in terrestrial water storage (TWS) from time-variable gravity data from GRACE to delineate and characterize the evolution of drought and its impact on vegetation growth. GRACE-derived TWS provides spatially continuous observations of changes in overall water supply and regional drought extent, persistence and severity, while satellite-derived SM provides enhanced delineation of shallow-depth soil water supply. Together these data provide complementary metrics quantifying available plant water supply. We use these data to investigate the supply changes from water components at different depths in relation to satellite-based enhanced vegetation index (EVI) and gross primary productivity (GPP) from MODIS and solar-induced fluorescence (SIF) from GOME-2, during and following major drought events observed in the state of Texas, USA and its surrounding semiarid area for the past decade. We find that in normal years the spatial pattern of the vegetation–moisture relationship follows the gradient in mean annual precipitation. However since the 2011 hydrological drought, vegetation growth shows enhanced sensitivity to surface SM variations in the grassland area located in central Texas, implying that the grassland, although susceptible to drought, has the capacity for a speedy recovery. Vegetation dependency on TWS weakens in the shrub-dominated west and strengthens in the grassland and forest area spanning from central to eastern Texas, consistent with changes in water supply pattern. We find that in normal years GRACE TWS shows strong coupling and similar characteristic time scale to surface SM, while in drier years GRACE TWS manifests stronger persistence, implying longer recovery time and prolonged water supply constraint on vegetation growth. The synergistic combination of GRACE TWS and surface SM, along with remote-sensing vegetation observations provides new insights into drought impact on vegetation–moisture relationship, and unique information regarding vegetation resilience and the recovery of hydrological drought

    Electrodynamics of Media

    Get PDF
    Contains research objectives, summary of research and reports on three research projects.Joint Services Electronics Program (Contract DAAB07-75-C-1346)California Institute of Technology (Contract 953524

    State of the Art in Large-Scale Soil Moisture Monitoring

    Get PDF
    Soil moisture is an essential climate variable influencing land atmosphere interactions, an essential hydrologic variable impacting rainfall runoff processes, an essential ecological variable regulating net ecosystem exchange, and an essential agricultural variable constraining food security. Large-scale soil moisture monitoring has advanced in recent years creating opportunities to transform scientific understanding of soil moisture and related processes. These advances are being driven by researchers from a broad range of disciplines, but this complicates collaboration and communication. For some applications, the science required to utilize large-scale soil moisture data is poorly developed. In this review, we describe the state of the art in large-scale soil moisture monitoring and identify some critical needs for research to optimize the use of increasingly available soil moisture data. We review representative examples of 1) emerging in situ and proximal sensing techniques, 2) dedicated soil moisture remote sensing missions, 3) soil moisture monitoring networks, and 4) applications of large-scale soil moisture measurements. Significant near-term progress seems possible in the use of large-scale soil moisture data for drought monitoring. Assimilation of soil moisture data for meteorological or hydrologic forecasting also shows promise, but significant challenges related to model structures and model errors remain. Little progress has been made yet in the use of large-scale soil moisture observations within the context of ecological or agricultural modeling. Opportunities abound to advance the science and practice of large-scale soil moisture monitoring for the sake of improved Earth system monitoring, modeling, and forecasting

    SMAP L-Band Microwave Radiometer: Instrument Design and First Year on Orbit

    Get PDF
    The Soil Moisture Active Passive (SMAP) L-band microwave radiometer is a conical scanning instrument designed to measure soil moisture with 4 percent volumetric accuracy at 40-kilometer spatial resolution. SMAP is NASA's first Earth Systematic Mission developed in response to its first Earth science decadal survey. Here, the design is reviewed and the results of its first year on orbit are presented. Unique features of radiometer include a large 6-meter rotating reflector, fully polarimetric radiometer receiver with internal calibration, and radio-frequency interference detection and filtering hardware. The radiometer electronics are thermally controlled to achieve good radiometric stability. Analyses of on-orbit results indicate the electrical and thermal characteristics of the electronics and internal calibration sources are very stable and promote excellent gain stability. Radiometer NEdT (Noise Equivalent differential Temperature) less than 1 degree Kelvin for 17-millisecond samples. The gain spectrum exhibits low noise at frequencies greater than 1 megahertz and 1 divided by f (pink) noise rising at longer time scales fully captured by the internal calibration scheme. Results from sky observations and global swath imagery of all four Stokes antenna temperatures indicate the instrument is operating as expected

    Future Radiometer Systems for Earth Remote Sensing

    No full text
    This paper will describe a new exciting concept for using microwave systems for Earth remote sensing. This concept will use a 6-m diameter mesh deployable antenna with active and passive systems to provide moderate spatial resolution images at L and S-band microwave frequencies
    corecore