3 research outputs found

    African swine fever virus (ASFV): biology, genomics and genotypes circulating in sub-Saharan Africa

    Get PDF
    African swine fever (ASF) is a highly infectious and fatal haemorrhagic disease of pigs that is caused by a complex DNA virus of the genus Asfivirus and Asfarviridae African suids family. The disease is among the most devastating pig diseases worldwide including Africa. Although the disease was first reported in the 19th century, it has continued to spread in Africa and other parts of the world. Globally, the rising demand for pork and concomitant increase in transboundary movements of pigs and pork products is likely to increase the risk of transmission and spread of ASF and pose a major challenge to the pig industry. Different genotypes of the ASF virus (ASFV) with varying virulence have been associated with different outbreaks in several countries in sub-Saharan Africa (SSA) and worldwide, and understanding genotype circulation will be important for ASF prevention and control strategies. ASFV genotypes unique to Africa have also been reported in SSA. This review briefly recounts the biology, genomics and genotyping of ASFV and provides an account of the different genotypes circulating in SSA. The review also highlights prevention, control and progress on vaccine development and identifies gaps in knowledge of ASFV genotype circulation in SSA that need to be addressed

    African Swine Fever Virus (ASFV): Biology, Genomics and Genotypes Circulating in Sub-Saharan Africa

    No full text
    African swine fever (ASF) is a highly infectious and fatal haemorrhagic disease of pigs that is caused by a complex DNA virus of the genus Asfivirus and Asfarviridae African suids family. The disease is among the most devastating pig diseases worldwide including Africa. Although the disease was first reported in the 19th century, it has continued to spread in Africa and other parts of the world. Globally, the rising demand for pork and concomitant increase in transboundary movements of pigs and pork products is likely to increase the risk of transmission and spread of ASF and pose a major challenge to the pig industry. Different genotypes of the ASF virus (ASFV) with varying virulence have been associated with different outbreaks in several countries in sub-Saharan Africa (SSA) and worldwide, and understanding genotype circulation will be important for ASF prevention and control strategies. ASFV genotypes unique to Africa have also been reported in SSA. This review briefly recounts the biology, genomics and genotyping of ASFV and provides an account of the different genotypes circulating in SSA. The review also highlights prevention, control and progress on vaccine development and identifies gaps in knowledge of ASFV genotype circulation in SSA that need to be addressed

    The first genotype II African swine fever virus isolated in Africa provides insight into the current Eurasian pandemic

    Get PDF
    African swine fever (ASF) caused by the African swine fever virus (ASFV) is ranked by OIE as the most important source of mortality in domestic pigs globally and is indigenous to African wild suids and soft ticks. Despite two ASFV genotypes causing economically devastating epidemics outside the continent since 1961, there have been no genome-level analyses of virus evolution in Africa. The virus was recently transported from south-eastern Africa to Georgia in 2007 and has subsequently spread to Russia, eastern Europe, China, and south-east Asia with devastating socioeconomic consequences. To date, two of the 24 currently described ASFV genotypes defined by sequencing of the p72 gene, namely genotype I and II, have been reported outside Africa, with genotype II being responsible for the ongoing pig pandemic. Multiple complete genotype II genome sequences have been reported from European, Russian and Chinese virus isolates but no complete genome sequences have yet been reported from Africa. We report herein the complete genome of a Tanzanian genotype II isolate, Tanzania/Rukwa/2017/1, collected in 2017 and determined using an Illumina short read strategy. The Tanzania/Rukwa/2017/1 sequence is 183,186 bp in length (in a single contig) and contains 188 open reading frames. Considering only un-gapped sites in the pairwise alignments, the new sequence has 99.961% identity with the updated Georgia 2007/1 reference isolate (FR682468.2), 99.960% identity with Polish isolate Pol16_29413_o23 (MG939586) and 99.957% identity with Chinese isolate ASFV-wbBS01 (MK645909.1). This represents 73 single nucleotide polymorphisms (SNPs) relative to the Polish isolate and 78 SNPs with the Chinese genome. Phylogenetic analysis indicated that Tanzania/Rukwa/2017/1 clusters most closely with Georgia 2007/1. The majority of the differences between Tanzania/Rukwa/2017/1 and Georgia 2007/1 genotype II genomes are insertions/deletions (indels) as is typical for ASFV. The indels included differences in the length and copy number of the terminal multicopy gene families, MGF 360 and 110. The Rukwa2017/1 sequence is the first complete genotype II genome from a precisely mapped locality in Africa, since the exact origin of Georgia2007/1 is unknown. It therefore provides baseline information for future analyses of the diversity and phylogeography of this globally important genetic sub-group of ASF viruses
    corecore