55 research outputs found

    Association of health, nutrition, and socioeconomic variables with global antimicrobial resistance: a modelling study

    Get PDF
    Background: Although antimicrobial use is a key selector for antimicrobial resistance, recent studies have suggested that the ecological context in which antimicrobials are used might provide important factors for the prediction of the emergence and spread of antimicrobial resistance. Methods: We used 1547 variables from the World Bank dataset consisting of socioeconomic, developmental, health, and nutritional indicators; data from a global sewage-based study on antimicrobial resistance (abundance of antimicrobial resistance genes [ARGs]); and data on antimicrobial usage computed from the ECDC database and the IQVIA database. We characterised and built models predicting the global resistome at an antimicrobial class level. We used a generalised linear mixed-effects model to estimate the association between antimicrobial usage and ARG abundance in the sewage samples; a multivariate random forest model to build predictive models for each antimicrobial resistance class and to select the most important variables for ARG abundance; logistic regression models to test the association between the predicted country-level antimicrobial resistance abundance and the country-level proportion of clinical resistant bacterial isolates; finite mixture models to investigate geographical heterogeneities in the abundance of ARGs; and multivariate finite mixture models with covariates to investigate the effect of heterogeneity in the association between the most important variables and the observed ARG abundance across the different country subgroups. We compared our predictions with available clinical phenotypic data from the SENTRY Antimicrobial Surveillance Program from eight antimicrobial classes and 12 genera from 56 countries. Findings: Using antimicrobial use data from between Jan 1, 2016, and Dec 31, 2019, we found that antimicrobial usage was not significantly associated with the global ARG abundance in sewage (p=0·72; incidence rate ratio 1·02 [95% CI 0·92-1·13]), whereas country-specific World Bank's variables explained a large amount of variation. The importance of the World Bank variables differed between antimicrobial classes and countries. Generally, the estimated global ARG abundance was positively associated with the prevalence of clinical phenotypic resistance, with a strong association for bacterial groups in the human gut. The associations between bacterial groups and ARG abundance were positive and significantly different from zero for the aminoglycosides (three of the four of the taxa tested), β-lactam (all the six microbial groups), fluoroquinolones (seven of nine of the microbial groups), glycopeptide (one microbial group tested), folate pathway antagonists (four of five microbial groups), and tetracycline (two of nine microbial groups). Interpretation: Metagenomic analysis of sewage is a robust approach for the surveillance of antimicrobial resistance in pathogens, especially for bacterial groups associated with the human gut. Additional studies on the associations between important socioeconomic, nutritional, and health factors and antimicrobial resistance should consider the variation in these associations between countries and antimicrobial classes.</b

    Pathogenic and commensal Escherichia coli from irrigation water show potential in transmission of extended spectrum and AmpC β-lactamases determinants to isolates from lettuce

    Get PDF
    There are few studies on the presence of extendedspectrum β-lactamases and AmpC β-lactamases (ESBL/AmpC) in bacteria that contaminate vegetables. The role of the production environment in ESBL/ AmpC gene transmission is poorly understood. The occurrence of ESBL/AmpC in Escherichia coli (n = 46) from lettuce and irrigation water and the role of irrigation water in the transmission of resistant E. coli were studied. The presence of ESBL/AmpC, genetic similarity and phylogeny were typed using genotypic and phenotypic techniques. The frequency of β-lactamase gene transfer was studied in vitro. ESBLs/AmpC were detected in 35 isolates (76%). Fourteen isolates (30%) produced both ESBLs/AmpC. Prevalence was highest in E. coli from lettuce (90%). Twenty-two isolates (48%) were multi-resistant with between two and five ESBL/AmpC genes. The major ESBL determinant was the CTX-M type (34 isolates). DHA (33% of isolates) were the dominant AmpC β lactamases. There was a high conjugation efficiency among the isolates, ranging from 3.5 × 10−2 to 1 × 10−2 ± 1.4 × 10−1 transconjugants per recipient. Water isolates showed a significantly higher conjugation frequency than those from lettuce. A high degree of genetic relatedness between E. coli from irrigation water and lettuce indicated possible common ancestry and pathway of transmission.We acknowledge the TWAS Fellowship for Research and Advanced Training, National Research Foundation and Vice-Chancellor Postdoctoral Fellowship Programme at the University of Pretoria for financing P. M. K. Njage during the research work. The sequence analysis facility was funded by the National Research Foundation of South Africa.http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1751-7915am201

    Draft Genome Sequences of Enterococcus mundtii Strains Isolated from Beef Slaughterhouses in Kenya

    Get PDF
    We present here draft genome sequences of Enterococcus mundtii strains K7-EM, P2-EM, C11-EM, and H18-EM, which were isolated from slaughterhouse equipment, carcasses, and personnel of small- and medium-sized beef slaughterhouses in Kenya

    Extended-spectrum β-lactamase, shigatoxin and haemolysis capacity of O157 and non-O157 E. coli serotypes from producer-distributor bulk milk

    Get PDF
    We investigated for virulence genes (stx1, stx2 and hlyA), serotypes and extended-spectrum β-lactamases (ESBLs) producing capacity in O157 and non-O157 Escherichia coli isolated from producer-distributor bulk milk (PDBM). Fifteen different E. coli O-serogroups were observed from the isolates (n=121). The prevalence of stx1 and stx2 genes among the E. coli isolates was 8.3% and 11.6% (n=121), respectively, while 5.8% harboured both stx1 and stx2. Four E. coli isolates (3.3%) had ESBLs producing capacity, resisted multiple cephalosporins and aztreonam, and carried stx genes. Cluster analysis using GTG5 finger printing revealed a diversity of E. coli seropathotypes in PDBM which are known to be associated with human diarrhoeal diseases. These results highlight a potential risk posed on human health by the consumption of PDBM contaminated with pathogenic E. coli. A further quantitative risk assessment of the impact of pathogenic E. coli contamination in PDBM on human health is therefore recommended.Milk South Africahttp://www.elsevier.com/locate/idairyj2018-03-31hb2017Food Scienc

    Global monitoring of antimicrobial resistance based on metagenomics analyses of urban sewage

    Get PDF
    Antimicrobial resistance (AMR) is a serious threat to global public health, but obtaining representative data on AMR for healthy human populations is difficult. Here, we use metagenomic analysis of untreated sewage to characterize the bacterial resistome from 79 sites in 60 countries. We find systematic differences in abundance and diversity of AMR genes between Europe/North-America/Oceania and Africa/Asia/South-America. Antimicrobial use data and bacterial taxonomy only explains a minor part of the AMR variation that we observe. We find no evidence for cross-selection between antimicrobial classes, or for effect of air travel between sites. However, AMR gene abundance strongly correlates with socio-economic, health and environmental factors, which we use to predict AMR gene abundances in all countries in the world. Our findings suggest that global AMR gene diversity and abundance vary by region, and that improving sanitation and health could potentially limit the global burden of AMR. We propose metagenomic analysis of sewage as an ethically acceptable and economically feasible approach for continuous global surveillance and prediction of AMR

    The Analysis of Field Strains Isolated From Food, Animal and Clinical Sources Uncovers Natural Mutations in Listeria monocytogenes Nisin Resistance Genes

    Get PDF
    Nisin is a commonly used bacteriocin for controlling spoilage and pathogenic bacteria in food products. Strains possessing high natural nisin resistance that reduce or increase the potency of this bacteriocin against Listeria monocytogenes have been described. Our study sought to gather more insights into nisin resistance mechanisms in natural L. monocytogenes populations by examining a collection of 356 field strains that were isolated from different foods, food production environments, animals and human infections. A growth curve analysis-based approach was used to access nisin inhibition levels and assign the L. monocytogenes strains into three nisin response phenotypic categories; resistant (66%), intermediate (26%), and sensitive (8%). Using this categorization isolation source, serotype, genetic lineage, clonal complex (CC) and strain-dependent natural variation in nisin phenotypic resistance among L. monocytogenes field strains was revealed. Whole genome sequence analysis and comparison of high nisin resistant and sensitive strains led to the identification of new naturally occurring mutations in nisin response genes associated with increased nisin resistance and sensitivity in this bacterium. Increased nisin resistance was detected in strains harboring RsbUG77S and PBPB3V240F amino acid substitution mutations, which also showed increased detergent stress resistance as well as increased virulence in a zebra fish infection model. On the other hand, increased natural nisin sensitivity was detected among strains with mutations in sigB, vir, and dlt operons that also showed increased lysozyme sensitivity and lower virulence. Overall, our study identified naturally selected mutations involving pbpB3 (lm0441) as well as sigB, vir, and dlt operon genes that are associated with intrinsic nisin resistance in L. monocytogenes field strains recovered from various food and human associated sources. Finally, we show that combining growth parameter-based phenotypic analysis and genome sequencing is an effective approach that can be useful for the identification of novel nisin response associated genetic variants among L. monocytogenes field strains.Peer reviewe

    Systematic-review and meta-analysis on effect of decontamination interventions on prevalence and concentration of Campylobacter spp. during primary processing of broiler chickens

    Get PDF
    Please read abstract in the article.Partly supported by the Australia Awards Africa Post-Doctoral Fellowship.https://www.elsevier.com/locate/fmhj2023Consumer ScienceFood Scienc
    • …
    corecore