2,928 research outputs found

    A floor sensor system for gait recognition

    No full text
    This paper describes the development of a prototype floor sensor as a gait recognition system. This could eventually find deployment as a standalone system (eg. a burglar alarm system) or as part of a multimodal biometric system. The new sensor consists of 1536 individual sensors arranged in a 3 m by 0.5 m rectangular strip with an individual sensor area of 3 cm2. The sensor floor operates at a sample rate of 22 Hz. The sensor itself uses a simple design inspired by computer keyboards and is made from low cost, off the shelf materials. Application of the sensor floor to a small database of 15 individuals was performed. Three features were extracted : stride length, stride cadence, and time on toe to time on heel ratio. Two of these measures have been used in video based gait recognition while the third is new to this analysis. These features proved sufficient to achieve an 80 % recognition rate

    An improved bound for the rigidity of linearly constrained frameworks

    Get PDF
    We consider the problem of characterising the generic rigidity of bar-joint frameworks in Rd in which each vertex is constrained to lie in a given a ne subspace. The special case when d = 2 was previously solved by I. Streinu and L. Theran in 2010 and the case when each vertex is constrained to lie in an a ne subspace of dimension t, and d t(t 1) was solved by Cruickshank, Guler and the rst two authors in 2019. We extend the latter result by showing that the given characterisation holds whenever d 2t

    Hydrodynamic Equation for the Breakdown of the Quantum Hall Effect in a Uniform Current

    Full text link
    The hydrodynamic equation for the spatial and temporal evolution of the electron temperature T_e in the breakdown of the quantum Hall effect at even-integer filling factors in a uniform current density j is derived from the Boltzmann-type equation, which takes into account electron-electron and electron-phonon scatterings. The derived equation has a drift term, which is proportional to j and to the first spatial derivative of T_e. Applied to the spatial evolution of T_e in a sample with an abrupt change of the width along the current direction, the equation gives a distinct dependence on the current direction as well as a critical relaxation, in agreement with the recent experiments.Comment: 4 pages, 1 Postscript figure, corrected equations, to be published in J. Phys. Soc. Jpn. 70 (2001) No.

    Sulphur hexaflouride: low energy (e,2e) experiments and molecular three-body distorted wave theory

    Get PDF
    Experimental and theoretical triple differential ionisation cross-sections (TDCS’s) are presented for the highest occupied molecular orbital of sulphur hexafluoride. These measurements were performed in the low energy regime, with outgoing electron energies ranging from 5 to 40 eV in a coplanar geometry, and with energies of 10 and 20 eV in a perpendicular geometry. Complementary theoretical predictions of the TDCS were calculated using the molecular three-body distorted wave formalism. Calculations were performed using a proper average over molecular orientations as well as the orientation-averaged molecular orbital approximation. This more sophisticated model was found to be in closer agreement with the experimental data, however neither model accurately predicts the TDCS over all geometries and energies

    Spectroscopy of the Potential Profile in a Ballistic Quantum Constriction

    Full text link
    We present a theory for the nonlinear current-voltage characteristics of a ballistic quantum constriction. Nonlinear features first develop because of above-barrier reflection from the potential profile, created by impurities in the vicinity of the constriction. The nonlinearity appears on a small voltage scale and makes it possible to determine distances between impurities as well as the magnitude of the impurity potentials.Comment: 3 pages, 4 figures (availiable upon request), REVTEX, Applied Physics Report 93-5

    Hydrodynamic Equations in Quantum Hall Systems at Large Currents

    Full text link
    Hydrodynamic equations (HDEQs) are derived which describe spatio-temporal evolutions of the electron temperature and the chemical potential of two-dimensional systems in strong magnetic fields in states with large diagonal resistivity appearing at the breakdown of the quantum Hall effect. The derivation is based on microscopic electronic processes consisting of drift motions in a slowly-fluctuating potential and scattering processes due to electron-electron and electron-phonon interactions. In contrast with the usual HDEQs, one of the derived HDEQs has a term with an energy flux perpendicular to the electric field due to the drift motions in the magnetic field. As an illustration, the current distribution is calculated using the derived HDEQs.Comment: 10 pages, 2 Postscript figures, to be published in J. Phys. Soc. Jpn. 71 (2002) No.

    Electron-beam propagation in a two-dimensional electron gas

    Full text link
    A quantum mechanical model based on a Green's function approach has been used to calculate the transmission probability of electrons traversing a two-dimensional electron gas injected and detected via mode-selective quantum point contacts. Two-dimensional scattering potentials, back-scattering, and temperature effects were included in order to compare the calculated results with experimentally observed interference patterns. The results yield detailed information about the distribution, size, and the energetic height of the scattering potentials.Comment: 7 pages, 6 figure
    corecore