88 research outputs found

    Prior Binge Ethanol Exposure Potentiates the Microglial Response in a Model of Alcohol-Induced Neurodegeneration

    Get PDF
    Excessive alcohol consumption results in neurodegeneration which some hypothesize is caused by neuroinflammation. One characteristic of neuroinflammation is microglial activation, but it is now well accepted that microglial activation may be pro- or anti-inflammatory. Recent work indicates that the Majchrowicz model of alcohol-induced neurodegeneration results in anti-inflammatory microglia, while intermittent exposure models with lower doses and blood alcohol levels produce microglia with a pro-inflammatory phenotype. To determine the effect of a repeated binge alcohol exposure, rats received two cycles of the four-day Majchrowicz model. One hemisphere was then used to assess microglia via immunohistochemistry and while the other was used for ELISAs of cytokines and growth factors. A single binge ethanol exposure resulted in low-level of microglial activation; however, a second binge potentiated the microglial response. Specifically, double binge rats had greater OX-42 immunoreactivity, increased ionized calcium-binding adapter molecule 1 (Iba-1+) cells, and upregulated tumor necrosis factor-α (TNF-α) compared with the single binge ethanol group. These data indicate that prior ethanol exposure potentiates a subsequent microglia response, which suggests that the initial exposure to alcohol primes microglia. In summary, repeated ethanol exposure, independent of other immune modulatory events, potentiates microglial activity

    Neuron-Derived Extracellular Vesicles Modulate Microglia Activation and Function

    Get PDF
    Microglia act as the immune cells of the central nervous system (CNS). They play an important role in maintaining brain homeostasis but also in mediating neuroimmune responses to insult. The interactions between neurons and microglia represent a key process for neuroimmune regulation and subsequent effects on CNS integrity. However, the molecular mechanisms of neuron-glia communication in regulating microglia function are not fully understood. One recently described means of this intercellular communication is via nano-sized extracellular vesicles (EVs) that transfer a large diversity of molecules between neurons and microglia, such as proteins, lipids, and nucleic acids. To determine the effects of neuron-derived EVs (NDEVs) on microglia, NDEVs were isolated from the culture supernatant of rat cortical neurons. When NDEVs were added to primary cultured rat microglia, we found significantly improved microglia viability via inhibition of apoptosis. Additionally, application of NDEVs to cultured microglia also inhibited the expression of activation surface markers on microglia. Furthermore, NDEVs reduced the LPS-induced proinflammatory response in microglia according to reduced gene expression of proinflammatory cytokines (TNF-α, IL-6, MCP-1) and iNOS, but increased expression of the anti-inflammatory cytokine, IL-10. These findings support that neurons critically regulate microglia activity and control inflammation via EV-mediated neuron–glia communication. (Supported by R21AA025563 and R01AA025591)

    Recovery of Hippocampal-Dependent Learning Despite Blunting Reactive Adult Neurogenesis after Alcohol Dependence

    Get PDF
    Background: The excessive alcohol drinking that occurs in alcohol use disorder (AUD) causes neurodegeneration in regions such as the hippocampus, though recovery may occur after a period of abstinence. Mechanisms of recovery are not clear, though reactive neurogenesis has been observed in the hippocampal dentate gyrus following alcohol dependence and correlates to recovery of granule cell number. Objective: We investigated the role of neurons born during reactive neurogenesis in the recovery of hippocampal learning behavior after 4-day binge alcohol exposure, a model of an AUD. We hypothesized that reducing reactive neurogenesis would impair functional recovery. Methods: Adult male rats were subjected to 4-day binge alcohol exposure and two approaches were tested to blunt reactive adult neurogenesis, acute doses of alcohol or the chemotherapy drug, temozolomide (TMZ). Results: Acute 5 g/kg doses of EtOH gavaged T6 and T7 days post binge did not inhibit significantly the number of Bromodeoxyuridine-positive (BrdU+) proliferating cells in EtOH animals receiving 5 g/kg EtOH versus controls. A single cycle of TMZ inhibited reactive proliferation (BrdU+ cells) and neurogenesis (NeuroD+ cells) to that of controls. However, despite this blunting of reactive neurogenesis to basal levels, EtOH-TMZ rats were not impaired in their recovery of acquisition of the Morris water maze (MWM), learning similarly to all other groups 35 days after 4-day binge exposure. Conclusions: These studies show that TMZ is effective in decreasing reactive proliferation/neurogenesis following 4-day binge EtOH exposure, and baseline levels of adult neurogenesis are sufficient to allow recovery of hippocampal function

    Temporally Specific Burst in Cell Proliferation Increases Hippocampal Neurogenesis in Protracted Abstinence from Alcohol

    Get PDF
    Adult neurogenesis is a newly considered form of plasticity that could contribute to brain dysfunction in psychiatric disease. Chronic alcoholism, a disease affecting over 8% of the adult population, produces cognitive impairments and decreased brain volumes, both of which are partially reversed during abstinence. Clinical data and animal models implicate the hippocampus, a region important in learning and memory. In a model of alcohol dependence (chronic binge exposure for 4 d), we show that adult neurogenesis is inhibited during dependence with a pronounced increase in new hippocampal neuron formation after weeks of abstinence. This increase is attributable to a temporally and regionally specific fourfold increase in cell proliferation at day 7 of abstinence, with a majority of those cells surviving and differentiating at percentages similar to controls, effects that doubled the formation of new neurons. Although increases in cell proliferation correlated with alcohol withdrawal severity, proliferation remained increased when diazepam (10 mg/kg) was used to reduce withdrawal severity. Indeed, those animals with little withdrawal activity still show a twofold burst in cell proliferation at day 7 of abstinence. Thus, alcohol dependence and recovery from dependence continues to alter hippocampal plasticity during abstinence. Because neurogenesis may contribute to hippocampal function and/or learning, memory, and mood, compensatory neurogenesis and the return of normal neurogenesis may also have an impact on hippocampal structure and function. For the first time, these data provide a neurobiological mechanism that may underlie the return of human cognitive function and brain volume associated with recovery from addiction

    Binge Alcohol Exposure Transiently Changes the Endocannabinoid System: A Potential Target to Prevent Alcohol-Induced Neurodegeneration

    Get PDF
    Excessive alcohol consumption leads to neurodegeneration, which contributes to cognitive decline that is associated with alcohol use disorders (AUDs). The endocannabinoid system has been implicated in the development of AUDs, but little is known about how the neurotoxic effects of alcohol impact the endocannabinoid system. Therefore, the current study investigated the effects of neurotoxic, binge-like alcohol exposure on components of the endocannabinoid system and related N-acylethanolamines (NAEs), and then evaluated the efficacy of fatty acid amide hydrolase (FAAH) inhibition on attenuating alcohol-induced neurodegeneration. Male rats were administered alcohol according to a binge model, which resulted in a transient decrease in [3H]-CP-55,940 binding in the entorhinal cortex and hippocampus following two days, but not four days, of treatment. Furthermore, binge alcohol treatment did not change the tissue content of the three NAEs quantified, including the endocannabinoid and anandamide. In a separate study, the FAAH inhibitor, URB597 was administered to rats during alcohol treatment and neuroprotection was assessed by FluoroJade B (FJB) staining. The administration of URB597 during binge treatment did not significantly reduce FJB+ cells in the entorhinal cortex or hippocampus, however, a follow up “target engagement” study found that NAE augmentation by URB597 was impaired in alcohol intoxicated rats. Thus, potential alcohol induced alterations in URB597 pharmacodynamics may have contributed to the lack of neuroprotection by FAAH inhibition

    Functional Activation of Newborn Neurons Following Alcohol-Induced Reactive Neurogenesis

    Get PDF
    Abstinence after alcohol dependence leads to structural and functional recovery in many regions of the brain, especially the hippocampus. Significant increases in neural stem cell (NSC) proliferation and subsequent “reactive neurogenesis” coincides with structural recovery in hippocampal dentate gyrus (DG). However, whether these reactively born neurons are integrated appropriately into neural circuits remains unknown. Therefore, adult male rats were exposed to a binge model of alcohol dependence. On day 7 of abstinence, the peak of reactive NSC proliferation, rats were injected with bromodeoxyuridine (BrdU) to label dividing cells. After six weeks, rats underwent Morris Water Maze (MWM) training then were sacrificed ninety minutes after the final training session. Using fluorescent immunohistochemistry for c-Fos (neuronal activation), BrdU, and Neuronal Nuclei (NeuN), we investigated whether neurons born during reactive neurogenesis were incorporated into a newly learned MWM neuronal ensemble. Prior alcohol exposure increased the number of BrdU+ cells and newborn neurons (BrdU+/NeuN+ cells) in the DG versus controls. However, prior ethanol exposure had no significant impact on MWM-induced c-Fos expression. Despite increased BrdU+ neurons, no difference in the number of activated newborn neurons (BrdU+/c-Fos+/NeuN+) was observed. These data suggest that neurons born during alcohol-induced reactive neurogenesis are functionally integrated into hippocampal circuitry

    Increased Expression of M1 and M2 Phenotypic Markers in Isolated Microglia After Four-Day Binge Alcohol Exposure in Male Rats

    Get PDF
    Microglia activation and neuroinflammation are common features of neurodegenerative conditions, including alcohol use disorders (AUDs). When activated, microglia span a continuum of diverse phenotypes ranging from classically activated, pro-inflammatory (M1) microglia/macrophages to alternatively activated, growth-promoting (M2) microglia/macrophages. Identifying microglia phenotypes is critical for understanding the role of microglia in the pathogenesis of AUDs. Therefore, male rats were gavaged with 25% (w/v) ethanol or isocaloric control diet every 8 h for 4 days and sacrificed at 0, 2, 4, and 7 days after alcohol exposure (e.g., T0, T2, etc.). Microglia were isolated from hippocampus and entorhinal cortices by Percoll density gradient centrifugation. Cells were labeled with microglia surface antigens and analyzed by flow cytometry. Consistent with prior studies, isolated cells yielded a highly enriched population of brain macrophages/microglia (\u3e 95% pure), evidenced by staining for the macrophage/microglia antigen CD11b. Polarization states of CD11b+CD45low microglia were evaluated by expression of M1 surface markers, major histocompatibility complex (MHC) II, CD32, CD86, and M2 surface marker, CD206 (mannose receptor). Ethanol-treated animals begin to show increased expression of M1 and M2 markers at T0 (p = n.s.), with significant changes at the T2 time point. At T2, expression of M1 markers, MHC-II, CD86, and CD32 were increased (p \u3c 0.05) in hippocampus and entorhinal cortices, while M2 marker, CD206, was increased significantly only in entorhinal cortices (p \u3c 0.05). All effects resolved to control levels by T4. In summary, four-day binge alcohol exposure produces a transient increase in both M1 (MHC-II, CD32, and CD86) and M2 (CD206) populations of microglia isolated from the entorhinal cortex and hippocampus. Thus, these findings that both pro-inflammatory and potentially beneficial, recovery-promoting microglia phenotypes can be observed after a damaging exposure of alcohol are critically important to our understanding of the role of microglia in the pathogenesis of AUDs

    Quantification of anandamide, oleoylethanolamide and palmitoylethanolamide in rodent brain tissue using high performance liquid chromatography–electrospray mass spectroscopy

    Get PDF
    AbstractReported concentrations for endocannabinoids and related lipids in biological tissues can vary greatly; therefore, methods used to quantify these compounds need to be validated. This report describes a method to quantify anandamide (AEA), oleoylethanolamide (OEA) and palmitoylethanolamide (PEA) from rodent brain tissue. Analytes were extracted using acetonitrile without further sample clean up, resolved on a C18 reverse-phase column using a gradient mobile phase and detected using electrospray ionization in positive selected ion monitoring mode on a single quadrupole mass spectrometer. The method produced high recovery rates for AEA, OEA and PEA, ranging from 98.1% to 106.2%, 98.5% to 102.2% and 85.4% to 89.5%, respectively. The method resulted in adequate sensitivity with a lower limit of quantification for AEA, OEA and PEA of 1.4ng/mL, 0.6ng/mL and 0.5ng/mL, respectively. The method was reproducible as intraday and interday accuracies and precisions were under 15%. This method was suitable for quantifying AEA, OEA and PEA from rat brain following pharmacological inhibition of fatty acid amide hydrolase

    Neuroinflammation and Neurodegeneration in Adult Rat Brain from Binge Ethanol Exposure: Abrogation by Docosahexaenoic Acid

    Get PDF
    Evidence that brain edema and aquaporin-4 (AQP4) water channels have roles in experimental binge ethanol-induced neurodegeneration has stimulated interest in swelling/edema-linked neuroinflammatory pathways leading to oxidative stress. We report here that neurotoxic binge ethanol exposure produces comparable significant effects in vivo and in vitro on adult rat brain levels of AQP4 as well as neuroinflammation-linked enzymes: key phospholipase A2 (PLA2) family members and poly (ADP-ribose) polymerase-1 (PARP-1). In adult male rats, repetitive ethanol intoxication (3 gavages/d for 4 d, ∼ 9 g/kg/d, achieving blood ethanol levels ∼ 375 mg/dl; Majchrowicz model) significantly increased AQP4, Ca+2-dependent PLA2 GIVA (cPLA2), phospho-cPLA2 GIVA (p-cPLA2), secretory PLA2 GIIA (sPLA2) and PARP-1 in regions incurring extensive neurodegeneration in this model--hippocampus, entorhinal cortex, and olfactory bulb--but not in two regions typically lacking neurodamage, frontal cortex and cerebellum. Also, ethanol reduced hippocampal Ca+2-independent PLA2 GVIA (iPLA2) levels and increased brain oxidative stress footprints (4-hydroxynonenal-adducted proteins). For in vitro studies, organotypic cultures of rat hippocampal-entorhinocortical slices of adult age (∼ 60 d) were ethanol-binged (100 mM or ∼ 450 mg/dl) for 4 d, which augments AQP4 and causes neurodegeneration (Collins et al. 2013). Reproducing the in vivo results, cPLA2, p-cPLA2, sPLA2 and PARP-1 were significantly elevated while iPLA2 was decreased. Furthermore, supplementation with docosahexaenoic acid (DHA; 22:6n-3), known to quell AQP4 and neurodegeneration in ethanol-treated slices, blocked PARP-1 and PLA2 changes while counteracting endogenous DHA reduction and increases in oxidative stress footprints (3-nitrotyrosinated proteins). Notably, the PARP-1 inhibitor PJ-34 suppressed binge ethanol-dependent neurodegeneration, indicating PARP upstream involvement. The results with corresponding models support involvement of AQP4- and PLA2-associated neuroinflammatory pro-oxidative pathways in the neurodamage, with potential regulation by PARP-1 as well. Furthermore, DHA emerges as an effective inhibitor of these binge ethanol-dependent neuroinflammatory pathways as well as associated neurodegeneration in adult-age brain

    Effects of Naltrexone on Alcohol and Nicotine Use in Female P Rats

    Get PDF
    The objective of the present study was to determine the effectiveness of the opioid antagonist naltrexone at reducing the consumption of EtOH and nicotine in female alcohol-preferring (P) rats. P rats have been selectively bred to have a genetic predisposition for alcohol abuse, which allows them to be used as an animal model of alcoholism. P rats readily self-administer i.v nicotine (Le et al., 2016), have EtOH consumption during adolescence that is similar to that seen in adulthood, and operantly respond for EtOH until they are impaired/intoxicated (Bell et al., 2006). Thus, P rats are a useful model for studying naltrexone’s effects on EtOH and nicotine co-use
    corecore