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Abstract: Excessive alcohol consumption results in neurodegeneration which some hypothesize is
caused by neuroinflammation. One characteristic of neuroinflammation is microglial activation,
but it is now well accepted that microglial activation may be pro- or anti-inflammatory. Recent
work indicates that the Majchrowicz model of alcohol-induced neurodegeneration results in
anti-inflammatory microglia, while intermittent exposure models with lower doses and blood alcohol
levels produce microglia with a pro-inflammatory phenotype. To determine the effect of a repeated
binge alcohol exposure, rats received two cycles of the four-day Majchrowicz model. One hemisphere
was then used to assess microglia via immunohistochemistry and while the other was used for ELISAs
of cytokines and growth factors. A single binge ethanol exposure resulted in low-level of microglial
activation; however, a second binge potentiated the microglial response. Specifically, double binge
rats had greater OX-42 immunoreactivity, increased ionized calcium-binding adapter molecule 1
(Iba-1+) cells, and upregulated tumor necrosis factor-α (TNF-α) compared with the single binge
ethanol group. These data indicate that prior ethanol exposure potentiates a subsequent microglia
response, which suggests that the initial exposure to alcohol primes microglia. In summary, repeated
ethanol exposure, independent of other immune modulatory events, potentiates microglial activity.

Keywords: alcohol; ethanol; microglia; cytokines; TNF-alpha; alcoholism; microglial
priming; neurodegeneration

1. Introduction

Nearly 14% of the United States population meets the diagnostic criteria for an alcohol use
disorder (AUD) in any given year [1]. Excessive alcohol consumption produces neurodegeneration
in humans [2–4], an effect that has been confirmed in various pre-clinical models [5–8]. Due to its
preventable nature, alcoholism traditionally has not been defined as a neurodegenerative disorder, but
chronic, excessive consumption may cause damage in the temporal lobe on par with diseases such
as Alzheimer’s [4]. Indeed, alcoholic-related dementia is the second leading cause of dementia in
the United States only behind Alzheimer’s disease [9,10]. Even in the absence of dementia, cognitive
deficits such as increased impulsivity and impaired executive decision-making are found in many with
AUDs [11,12]. Alcohol-induced neurodegeneration and the associated cognitive deficits are thought to
be critical factors in the development of AUDs [13–15].

Despite the number of reports in human and preclinical models describing the neurotoxic effects
of alcohol, the mechanism of how alcohol produces neurodegeneration is unclear [16]. One such
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mechanism that has recently gained attention is the impact of excessive alcohol consumption on the
neuroimmune system, and particularly, microglia [17,18]. Analysis of the brains of human alcoholics
suggests that excessive alcohol consumption leads to microglial activation [19–21], but whether this
activation is the cause or consequence of alcohol-induced neurodegeneration is an active debate [22].
This discussion is due, in part, to a lack of understanding of the effect of alcohol on microglia coupled
with the recent appreciation of the role of microglia in both neurodegenerative and regenerative
processes [22–25]. Although microglia have historically been discussed as the phagocytes of the central
nervous system (CNS), these cells are far more complex, existing in a continuum of phenotypes or stages
of activation [26]. Microglia are constantly surveying the parenchyma in non-pathological conditions;
where in response to even a subtle change in their environment, microglia alter their morphological
and functional characteristics, a process termed microglial activation [27]. The nomenclature for
these stages or phenotypes vary. Terms like M1 and classical activation are applied when microglia
have an amoeboid morphology and secrete pro-inflammatory cytokines, whereas M2 and alternative
activation are used to describe microglia with bushier ramifications that secrete anti-inflammatory
cytokines [26,28]. In neurodegenerative diseases where microglial activation drives neuronal loss,
microglia are generally fully or classically activated (i.e., M1 phenotype), secreting pro-inflammatory
factors and undergoing uncontrolled phagocytosis [25,29]. How alcohol affects microglia is not well
described and appears to vary depending on the model. Most reports of alcohol-induced microglia
activation assume that all activated microglia are pro-inflammatory [19,23,30]. However, in the one
model with alcohol-induced neurodegeneration, the Majchrowicz four-day binge model, only a low
level of activation or alternative (M2) phenotype has been observed [22,24,31].

The variability of microglial phenotypes observed across different AUD models may be due to
the pattern of alcohol exposure, specifically intermittent versus sustained intoxication. Interestingly,
the intermittent exposure models show stronger evidence of pro-inflammatory microglia even with
lower doses of ethanol [22,30]. These disparate findings across models led us to question whether
the initial hit of alcohol exposure “primes” microglia such that intermittent exposure leads to a
potentiated response. Primed microglia have similar morphology and cytokine/growth factor
profiles as the M2/alternative microglia, but primed microglial activation is potentiated when
subsequent neuroimmunomodulators are applied [28,32,33]. Ethanol’s ability to prime microglia
and exacerbate the neuroimmune response to subsequent neuroimmune stimuli is suggested also by
the enhanced microglia response to LPS following alcohol exposure [23,34,35]. However, the ability of
a second “hit” or insult of ethanol to potentiate the neuroimmune response (independent of peripheral
immunomodulators) has not been examined. Therefore, the current study determines whether a second
binge ethanol exposure can potentiate the microglia response to binge alcohol exposure. Investigating
whether repeated ethanol exposure differentially affects microglia is important considering that the
majority of individuals suffering from an AUD drink in a binge pattern that produces periods of
high BECs interspersed with periods of withdrawal and abstinence [36–38]. Specifically, this study
examines both functional and morphological indices of microglial activation in the hippocampus and
entorhinal cortex, regions consistently damaged in this model [7,8].

2. Materials and Methods

2.1. Alcohol Administration Model

A total of 33 adult male Sprague-Dawley rats (Table 1; Charles River Laboratories; Raleigh, NC,
USA) were used in these experiments. Procedures performed were approved by the University of
Kentucky Institutional Animal Care and Use Committee (protocol #2008-0321, approved 20/6/2008)
and conformed to the Guidelines for the Care and Use of Laboratory Animals [39]. Animals weighed
approximately 275–300 g at arrival and were pair-housed in a University of Kentucky AALAC
accredited vivarium with a 12 h light:dark cycle. Rats were allowed to acclimate to the vivarium
for two days followed by three days of handling before any experimentation. Except during the
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binge periods, animals had ad libitum food and water access. Following acclimation, rats underwent
a modified version of the Majchrowicz AUD model similar to previously published reports [40–42];
however, animals used in this study underwent the Majchrowicz 4-day paradigm twice separated
by seven days. Rats were divided into four groups of comparable weights as summarized in Table 1.
Briefly, rats were gavaged intragastrically with either ethanol (25% w/v) or control diet (isocaloric
dextrose) in Vanilla Ensure Plus® (Abbott Laboratories; Chicago, IL, USA) every 8 h. Initially, each
rat in an ethanol group received 5 g/kg of ethanol, but subsequent doses were titrated using the
individual rat’s behavioral intoxication score on a six-point scale identical to previous reports [40].
Control rats received an average of the volume given to the ethanol group. All rats were then given
seven days of recovery with ad libitum access to food and water. A seven-day recovery period was
chosen because microglial activation is elevated for a week after ethanol exposure [22], and seven
days allowed animals to recover from withdrawal and regain body mass lost during the prior binge.
Thus, on the 11th day, the Majchrowicz binge model was repeated with rats receiving either ethanol or
control diet (Table 1). A separate group had ad libitum access to food and water throughout all periods.
For all groups, body weights were assessed daily during the binge procedures. The percent difference
in weight at the start and end of the 15-day treatment period was calculated.

Table 1. Experimental Design.

Group Binge 1 (4 Days) Recovery (7 Days) Binge 2 (4 Days)

Con/Con (n = 10) Control Diet Control Diet
Con/EtOH (n = 11) Control Diet Ad libitum chow Ethanol Diet
EtOH/EtOH (n = 8) Ethanol Diet Ethanol Diet

Ad libitum (n = 4) N/A N/A

2.2. Blood Ethanol Concentration Determination

To determine blood ethanol concentrations (BECs), tail blood was collected ninety minutes after
the seventh session of ethanol dosing during Binge 1 and/or at euthanasia (Binge 2). Bloods were
centrifuged for 5 min at 1800 ˆ g to separate plasma from red blood cells and immediately stored
at ´20 ˝C. BECs were determined from supernatant serum on an AM1 Alcohol Analyser (Analox;
London, UK) calibrated against a 300 mg/dL external standard. Each sample was run in triplicate and
the average of these runs was calculated and expressed in mg/dL ˘ SEM.

2.3. Tissue Processing

Rats were euthanized within 2–4 h of their final gavage by rapid decapitation. Brains were
extracted and dissected into two hemispheres on ice. The left hemisphere was fixed by immersion in
4% paraformaldehyde in phosphate buffer (pH = 7.4) for 2 h, rinsed and stored in phosphate buffered
saline at 4 ˝C until use in immunohistochemical experiments. The right hemisphere was further
dissected to remove the hippocampus and entorhinal cortex. Extracted regions were snap frozen on
dry ice and stored at ´80 ˝C until use in enzyme linked immunosorbent assays (ELISAs).

2.4. Immunohistochemistry

Immunohistochemical procedures were similar to previous reports [22,31]. The left hemisphere
was sectioned in a 1:12 series at 40 µm thickness with a vibrating microtome (Leica VT1000S; Wetzlar,
Germany) and sections were stored in cryoprotectant at ´20 ˝C. Adjacent series of every 12th section
were processed for immunohistochemistry. Briefly, after a series of washes (TBS, pH = 7.5), quenching
of endogenous peroxidases (0.6% H2O2 in TBS) and blocking of nonspecific antibody binding (TBS,
0.1% triton X-100, and 3% horse or goat serum as appropriate), tissue series was incubated overnight in
one of the following primary antibodies at 4 ˝C: mouse anti-OX-42 (1:1000; Serotec MCA275; Raleigh,
NC, USA), mouse anti-ED-1 (1:500; Serotec MCA341), mouse anti-OX-6 (1:500; Serotec, MC2687), or
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rabbit anti-Iba-1 (1:1000; Wako, 019-19741; Richmond, VA, USA). Primaries were chosen for their
specificity for microglia phenotypes [26,43]. OX-42 was selected as a marker of microglial activation
because it recognizes cluster of differentiation molecule 11b/c (CD11b/c) of complement receptor 3
(CR3), which is constitutively expressed in microglia; however, upregulation of CD11b/c is one of the
first indications of microglial activation [44–46]. Both ED-1 and OX-6 are selective for more classical
forms of microglial activation [26]. ED-1 recognizes the lysosomal membranes of microglia and is
thought to be an indication of phagocytic activity [47]. OX-6, however, is an antibody against the
major histocompatibility complex-II that elicits T-helper cell activation [26,48]. The Iba-1 antibody
was selected because it recognizes a calcium binding protein expressed in all microglia [49]. Sections
were incubated in secondary antibody (biotinylated horse anti-mouse, rat adsorbed, or biotinylated
goat anti-rabbit, Vector Laboratories, Burlingame, CA, USA), avidin-biotin-peroxidase complex
(ABC Elite Kit, Vector Laboratories) and the chromagen, nickel-enhanced 3,31-diaminobenzidine
tetrahydrochloride (Polysciences; Warrington, PA, USA), as previously described [22,31]. Following
the final wash, all processed sections were mounted onto glass slides, dried and coverslipped with
Cytoseal® (Stephens Scientific, Wayne, NJ, USA).

During quantification, slides were coded to ensure the experimenter was blind to treatment
condition. To determine OX-42 immunoreactivity, images of the hippocampus (Bregma ´2.50 and
´4.00 mm) or entorhinal cortex (Bregma ´3.00 and ´6.00 mm) were obtained with a 10ˆ objective on
an Olympus BX-51 microscope (Olympus, Center Valley, PA, USA) linked to a motorized stage (Prior,
Rockland, MA, USA), microcator and DP70 digital camera (Olympus) [50]. OX-42 immunoreactivity
was determined by optical density with Visiomorph™ (Visiopharm, Hørsholm, Denmark). Subregions
of the hippocampus (dentate gyrus (DG), cornu amonis (CA1 and CA2/3)) and the entorhinal cortex
were traced separately and the percent area of OX-42 immunopositive pixels within each region of
interest was determined. Immunoreactivity was then normalized to the ad libitum control group and
expressed as percent of control.

For ED-1 or OX-6 immunohistochemistry, sections were qualitatively assessed in the hippocampus
and entorhinal cortex as in past reports [22]. To determine the impact of ethanol on microglia number,
Iba-1+ cells were counted within the hippocampus and the entorhinal cortex. Iba-1+ cells within
the subregions of the hippocampus were estimated by unbiased stereological methods as previously
reported [22,51]. NewCAST™ Stereology software (Visiopharm version 3.6.4.0) coupled to the same
Olympus BX-51 microscope system above applied a 70 µm ˆ 70 µm counting frame and cells were
randomly sampled using a 20 µm dissector height with 2 µm guard zones within the CA1 (400 µm x,y
step length), CA2/3 (250 µm x,y step length), and DG (250 µm x,y step length). Total Iba-1+ cells were
calculated using the equation (1):

N “
ÿ

Qˆ 1{asfˆ 1{tsfˆ 1{ssf (1)

where Q is the number of cells counted, asf is the area sampling fraction, tsf is the thickness sampling
fraction, and ssf is the section sampling fraction [52]. Coefficients of error ranged from 0.011 to 0.039
and averaged 0.023 ˘ 0.001. For the entorhinal cortex, microglia number was determined using a
profile counting method [53]. Images of the entorhinal cortex were collected with a 10ˆ objective
using a SPOT Advanced™ camera (SPOT Imaging Solutions, Sterling Heights, MI, USA). Iba-1+ cells
were quantified in collected images by an automated counting system (Image Pro Plus 6.3; Media
Cybernetics, Rockville, MD, USA) and expressed as mean Iba-1+ cells/section ˘ SEM as previously
described [22].

2.5. Enzyme Linked Immunosorbent Assay

Hippocampus and entorhinal cortex from the right hemisphere were processed for ELISA as
reported previously [22,54]. Briefly, tissues were homogenized in an ice-cold lysis buffer (1 mL of
buffer/50 mg of tissue; pH = 7.4), then tumor necrosis factor-α (TNF-α; Invitrogen, #KRC3011C;
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Camarillo, CA, USA) and interleukin-10 (IL-10; Invitrogen, #KRC0101) cytokine protein was
determined via ELISA according to the manufacturer’s instructions. These two cytokines were used to
assess pro or anti-inflammatory microglia, respectively [43]. Brain derived neurotrophic factor (BDNF)
was measured in the hippocampus (Millipore, #CYT306; Billerica, MA, USA) as the hippocampus is
more susceptible to alcohol-induced BDNF dysregulation [55,56]. All samples and standards were
run in duplicate. Absorbance was measured at 450 nm on a DXT880 Multimode Detector plate reader
(Beckman Coulter; Brea, CA, USA). Cytokine concentrations were normalized to the total protein
content as determined by a Pierce BCA Protein Assay Kit (Thermo Scientific; Rockford, IL, USA) and
reported as pg/mg of total protein ˘ SEM.

2.6. Statistical Analyses

Data were analyzed and graphed using Prism (version 5.04, GraphPad Software, Inc. La Jolla,
CA, USA). Effects were considered significantly different if p < 0.05. Behavioral scores were analyzed
with a Kruskal-Wallis test. All other analyses used a one-way ANOVA with post-hoc Tukey’s test
to compare groups if an effect of treatment was observed. Where appropriate, each region of the
hippocampus or entorhinal cortex was considered independent and therefore analyzed separately.
Correlations were conducted to examine the relationship of microglial markers of activation and the
animal model data as well as microglial activation and cytokine concentration. Correlations were only
run within the Con/EtOH or EtOH/EtOH group if post-hoc analyses showed a significant difference to
control groups. Spearman analyses were used for intoxication behavior scores (nonparametric), while
Pearson’s analyses were used for all other factors (parametric).

3. Results

3.1. Animal Treatment Data

For animal model data, each binge period was analyzed independently. For example, BECs from
Binge 1 and Binge 2 for the EtOH/EtOH group were analyzed separately. No differences were detected
between any groups in either intoxication score (H(3) = 5.60, p = 0.07; grand mean = 1.6 ˘ 0.1) or in
BECs (F(2,24) = 0.78, p = 0.32; grand mean = 399.8 ˘ 12.4 mg/dL) as shown in Table 2. However,
one-way ANOVA revealed differences in the average dose per day (F(2,24) = 4.235, p = 0.03). A post-hoc
Tukey’s test indicated that ethanol doses of Binge 2 in the EtOH/EtOH rats were significantly higher
than ethanol doses of the single binge (Con/EtOH) rats (Table 2). Body weights were also assessed to
determine whether restricted caloric intake affected microglia activation [57,58]. One-way ANOVA
indicated that treatment affected weight change (F(2,24) = 4.235, p = 0.03) (Table 2). A post-hoc
Tukey’s test showed that the weight change differed between all of the liquid diet groups (Con/Con,
Con/EtOH, and EtOH/EtOH) compared with the ad libitum group. There was a significant effect of
receiving ethanol on weight loss compared with the Con/Con group, but no difference between the
Con/EtOH and EtOH/EtOH groups was observed (Table 3).

Table 2. Alcohol Model Data.

Group Intoxication
Behavior (0–5 Scale) Dose (g/kg/day) BEC (mg/dL)

Con/EtOH (15th Day) 1.8 ˘ 0.1 9.6 ˘ 0.2 422.2 ˘ 21.1
EtOH/EtOH Binge 1 (4th Day) 1.7 ˘ 0.1 9.9 ˘ 0.4 378.7 ˘ 17.7
EtOH/EtOH Binge 2 (15th Day) 1.3 ˘ 0.2 11.0 ˘ 0.5 # 390.3 ˘ 24.0

# p < 0.05 compared to Con/EtOH.
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Table 3. Body Weight.

Group % Difference

Con/Con (n = 10) +1.0% ˘ 1.4% †

Con/EtOH (n = 11) ´6.6% ˘ 2.1% *
EtOH/EtOH (n = 8) ´8.7% ˘ 1.7% *

Ad libitum (n = 4) +25.2% ˘ 1.7%

* p < 0.05 vs. Con/Con and ad libitum; † p < 0.05 vs. ad libitum only.

3.2. OX-42 Immunoreactivity Increased by EtOH Exposure

OX-42 expression was examined to determine whether microglia were further or differentially
activated following a second binge exposure. OX-42 positive cells were apparent in all treatment
groups, which is consistent with its constitutive expression in all types of microglia [59]; however,
there was a visibly distinct increase in immunoreactivity in ethanol treated animals accompanied
by an apparent morphological change. Microglia in ethanol animals appeared to have shorter but
thickened ramifications compared with the control animals (Figures 1B,C and 2B,C). One-way ANOVAs
indicated a significant effect of treatment in the CA1 (F(3,29) = 16.81, p < 0.0001), CA2/3 (F(3,29) = 18.34,
p < 0.0001), and DG (F(3,29) = 14.43, p < 0.0001) fields (Figure 1), as well as in the entorhinal cortex
(F(3,28) = 19.01, p < 0.0001) (Figure 2). As expected based on previous data [22], post-hoc Tukey’s tests
indicated a significant increase in OX-42 density in all ethanol treated groups in all subregions of the
hippocampus compared with the control or ad libitum groups. Importantly, the EtOH/EtOH group
showed greater immunoreactivity than Con/EtOH in all regions analyzed except the DG. Moreover,
no difference in OX-42 was observed between ad libitum animals and the Con/Con group. Correlations
between binge model parameters (intoxication behavior, dose per day, total dose, BEC, percent weight
loss) and OX-42 immunoreactivity were run within the EtOH/EtOH and Con/EtOH group, but no
significant correlations were observed (Table 4).
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Figure 1. Potentiated Microglial Activation in the Hippocampus by Repeated Ethanol Exposure. OX-42
(CD11b/c) is upregulated in the hippocampus of ethanol-exposed rats as shown in representative
photomicrographs of the (A–C) hippocampal dentate gyrus for (B) Con/EtOH and (C) EtOH/EtOH
groups compared to (A) controls. Analysis of OX-42 immunoreactivity indicated that the EtOH/EtOH
group had significantly more staining than the Con/EtOH group in the: (D) cornu amonis 1 (CA1)
and (E) cornu amonis 2/3 (CA2/3) regions but not the (F) dentate gyrus (DG). Data expressed as a
percentage of ad libitum control (not shown). Images were taken at 50ˆ magnification with insets at
600ˆ magnification. Scale bar = 200 µm; inset 30 µm. * p < 0.05 compared to ad libitum and Con/Con
groups; # p < 0.05 compared to Con/EtOH.
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Data expressed as a percentage of ad libitum control (not shown). Images were taken at 200ˆ

magnification with insets at 600ˆ magnification. Scale bar = 100 µm; inset 30 µm. * p < 0.05 compared
to ad libitum and Con/Con groups; # p < 0.05 compared to Con/EtOH.

Table 4. No Correlation between OX-42 and Model Parameters or Microglia Number.

- Hippocampus Entorhinal Cortex

Parameter Con/EtOH EtOH/EtOH Con/EtOH EtOH/EtOH

Intoxication Behavior S = 0.433 S = 0.523 S = 0.628 S = 0.371
Dose/Day p = ´0.321 p = ´0.053 p = ´0.488 p = ´0.456
Total Dose p = ´0.303 p = ´0.0267 p = ´0.331 p = ´0.575

BEC p = 0.424 p = ´0.572 p = ´0.082 p = 0.032
Percent Weight Loss p = ´0.222 p = 0.249 p = 0.029 p = 0.319

Iba-1+ Cells p = 0.161 p = 0.539 p = ´0.136 p = 0.357

3.3. Lack of ED-1 or OX-6 Positive Cells

The ED-1 antibody was used to identify phagocytic microglia, whereas OX-6 was used to visualize
the upregulation of MHC-II [26,29]. No ED-1 (Figure 3) positive cells were observed within the
parenchyma of the hippocampus or entorhinal cortex of any animal in any group. No OX-6 (Figure 4)
positive cells were observed within the parenchyma of the hippocampus or entorhinal cortex of any
group, except for one EtOH/EtOH treated animal. This animal had several OX-6 cells in the more
posterior regions of the hippocampus and entorhinal cortex (Figure 4D,H) but was not an outlier for
any intoxication parameter including BEC, intoxication behavior, or ethanol dose per day. Interestingly,
the morphology of these cells still appeared to be characteristic of the low grade, partial activation
state of microglia as they are ramified and not amoeboid [26]. ED-1 and OX-6 positive cells were
visible in blood vessels, the hippocampal fissure, and along the meninges in all treatment groups
(Figures 3 and 4) similar to that observed previously following binge ethanol exposure [22,60]. Thus,
repeated exposure to four-day binge ethanol treatment failed to significantly induce microglia to a
phagocytic phenotype or state that expressed MHC-II in the brain parenchyma.
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Figure 3. Lack of ED-1 Positive Cells. ED-1 was not visible in the parenchyma of the (A–C) 
hippocampus or (D–F) entorhinal cortex as seen in representative photomicrographs in (A,D) 
controls, (B,E) Con/EtOH (C,F) or EtOH/EtOH groups. ED-1 positive cells could be seen along the 
hippocampal fissure and blood vessels as shown in the inset of B. Scale bars = 200 µm. 

 
Figure 4. Lack of OX-6 Positive Cells. No OX-6 positive cells were observed regardless of treatment, 
except in one EtOH/EtOH rat as shown in representative photomicrographs of the (A–C) 
hippocampus or (E–H) entorhinal cortex in (A,E) controls, (B,F) Con/EtOH (C,G) or EtOH/EtOH 
groups. OX-6 positive cells could be seen along blood vessels as shown in the inset of B. One 
EtOH/EtOH animal showed upregulation of OX-6 in both the (D) hippocampus and (H) entorhinal 
cortex. Scale bars = 200 µm. 
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hippocampus or (D–F) entorhinal cortex as seen in representative photomicrographs in (A,D) controls,
(B,E) Con/EtOH (C,F) or EtOH/EtOH groups. ED-1 positive cells could be seen along the hippocampal
fissure and blood vessels as shown in the inset of B. Scale bars = 200 µm.
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Figure 4. Lack of OX-6 Positive Cells. No OX-6 positive cells were observed regardless of treatment,
except in one EtOH/EtOH rat as shown in representative photomicrographs of the (A–C) hippocampus
or (E–H) entorhinal cortex in (A,E) controls, (B,F) Con/EtOH (C,G) or EtOH/EtOH groups. OX-6 positive
cells could be seen along blood vessels as shown in the inset of B. One EtOH/EtOH animal showed
upregulation of OX-6 in both the (D) hippocampus and (H) entorhinal cortex. Scale bars = 200 µm.
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3.4. Differential Effects of Treatment on Number of Microglia

Stereology and profile counts were used to determine whether repeated ethanol exposure affected
the number of microglia during ethanol exposure (Figure 5). One-way ANOVAs indicated a significant
effect of treatment in the CA1 (F(3,29) = 161.6, p < 0.0001), CA2/3 (F(3,29) = 17.99, p < 0.0001), and
DG (F(3,29) = 69.98, p < 0.0001) fields, as well as in entorhinal cortex (F(3,28) = 6.78, p = 0.001).
Post-hoc Tukey’s tests indicated a significant increase in the number of Iba-1+ cells throughout the
hippocampus in the EtOH/EtOH group compared with all other groups (Figure 5A–C). However,
in the entorhinal cortex microglia cells in the EtOH/EtOH group were decreased compared to the
ad libitum and control groups but were similar to the number seen in Con/EtOH treated animals
(Figure 5D). A post-hoc Tukey’s test showed that Con/EtOH rats had decreased Iba-1+ cells in all
regions measured as compared to Con/Con and ad libitum groups (Figure 5) [61]. Importantly, because
the number of microglia can affect immunoreactivity, a correlation between the number of microglia
versus OX-42 immunoreactivity was run, but no significant relationship was observed.
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ELISAs were used to assess the functional state of microglia, specifically the anti-inflammatory 
cytokine, IL-10, and the pro-inflammatory cytokine, TNF-α. No changes were seen in IL-10 during 
intoxication among any groups in either the hippocampus (F(3,28) = 0.57, p = 0.64) or the entorhinal 
cortex (F(3,24) = 0.50, p = 0.69; Figure 6A,B). However, one-way ANOVAs of TNF-α protein 
concentrations indicated a significant effect of treatment in the hippocampus (F(3,28) = 4.658,  
p = 0.009) but not the entorhinal cortex (F(3,24) = 0.99, p = 0.41). Post-hoc Tukey’s tests indicated a 
significant increase in TNF-α in the hippocampus in the EtOH/EtOH group compared to all other 
groups (Figure 6C). Correlations of binge parameters versus immunohistochemical results were run 
within the EtOH/EtOH group to further probe the distribution of TNF-α concentrations (Table 5). 
BECs correlated with TNF-α concentration (P(8) = 0.807, p = 0.016; Figure 7). 

Figure 5. Microglial Cell Counts Differentially Altered by Ethanol Experience. Stereological estimates
indicate an increase in the number of microglia in the EtOH/EtOH group in the (A) cornu amonis 1
(CA1), (B) cornu amonis 2/3 (CA2/3), and (C) dentate gyrus (DG) compared with all other groups.
However, the number of microglia in the Con/EtOH group was decreased throughout the hippocampus.
In the (D) entorhinal cortex, microglia were decreased in both the Con/EtOH and EtOH/EtOH groups
compared to both the ad libitum and Con/Con groups. * p < 0.05 compared to ad libitum and Con/Con
group; # p < 0.05 versus Con/EtOH.

3.5. Increased Pro-Inflammatory Cytokine Expression in EtOH/EtOH Group

ELISAs were used to assess the functional state of microglia, specifically the anti-inflammatory
cytokine, IL-10, and the pro-inflammatory cytokine, TNF-α. No changes were seen in IL-10 during
intoxication among any groups in either the hippocampus (F(3,28) = 0.57, p = 0.64) or the entorhinal
cortex (F(3,24) = 0.50, p = 0.69; Figure 6A,B). However, one-way ANOVAs of TNF-α protein
concentrations indicated a significant effect of treatment in the hippocampus (F(3,28) = 4.658, p = 0.009)
but not the entorhinal cortex (F(3,24) = 0.99, p = 0.41). Post-hoc Tukey’s tests indicated a significant
increase in TNF-α in the hippocampus in the EtOH/EtOH group compared to all other groups
(Figure 6C). Correlations of binge parameters versus immunohistochemical results were run within
the EtOH/EtOH group to further probe the distribution of TNF-α concentrations (Table 5). BECs
correlated with TNF-α concentration (P(8) = 0.807, p = 0.016; Figure 7).
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Figure 6. Increased TNF-α in EtOH/EtOH Group. Concentrations of (A,B) interleukin-10 (IL-10) and
(C,D) tumor necrosis factor-α (TNF-α) were determined by ELISA in both the hippocampus (A,C) and
entorhinal cortex (B,D). No change in IL-10 was measured in either the hippocampus or the entorhinal
cortex, but at least a 2.7-fold increase in TNF-α was measured in the (C) hippocampus in the EtOH/EtOH
group compared with all other groups. However, no change in TNF-α was seen in the (D) entorhinal
cortex. * p < 0.05 compared to ad libitum and Con/Con groups; # p < 0.05 compared to Con/EtOH.
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Figure 7. Correlations of Cytokines: (A) A positive correlation between blood ethanol concentration
(BEC) and tumor necrosis factor-α (TNF-α) concentration. Animals with BECs over 400 mg/dL
appear to have an increase in TNF-α. (B) A positive correlation between hippocampal estimates of
microglia number and brain derived neurotrophic factor (BDNF) concentrations in the Con/EtOH
group. A decline in the number of microglia cells correlated with decreases in BDNF concentrations.

Table 5. Select Hippocampal Cytokine and Growth Factor Correlations.

- TNF-α BDNF

Parameter Con/EtOH EtOH/EtOH Con/EtOH EtOH/EtOH

Intoxication Behavior S = 0.451 S = 0.371 S = ´0.421 S = 0.216
Dose/Day p = ´0.525 p = ´0.544 p = 0.166 p = ´0.149
Total Dose p = ´0.496 p = ´0.355 p = 0.160 p = ´0.144

BEC p = ´0.081 p = 0.807 * p = 0.166 p = 0.298
Percent Weight Loss p = 0.117 p = 0.610 p = 0.395 p = ´0.473

OX-42+ Density p = 0.493 p = ´0.139 p = 0.253 p = ´0.254
Iba-1+ Cells p = ´0.225 p = ´0.372 p = 0.835 * p = 0.224

* p < 0.05.
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3.6. Differential Effects of Treatment on BDNF Concentrations

Hippocampal BDNF concentrations were assessed to see the potential impact of microglia
activity because alternative microglia, observed herein, are associated with neurotrophic support [62].
A one-way ANOVA on BDNF concentrations indicated a significant effect of treatment in the
hippocampus (F(3,28) = 19.00, p < 0.0001). Post-hoc Tukey’s tests indicated a 20% increase in
BDNF concentration in the hippocampus in the EtOH/EtOH compared with all other groups, but
Con/EtOH rats had decreased concentrations of BDNF compared to both the Con/Con and ad libitum
groups (Figure 8). Correlations between binge animal model data as well as markers of microglial
activation were run versus BDNF concentrations for both the Con/EtOH and EtOH/EtOH groups
(Table 5). The estimated total number of microglia (P(10) = 0.835, p = 0.003) was correlated to BDNF
concentrations only in the Con/EtOH group (Figure 7).
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Figure 8. Ethanol Experience-Contingent Effects on BDNF. Concentrations of brain derived
neurotrophic factor (BDNF) were determined by ELISA in the hippocampus. BDNF was decreased by
approximately 15% in Con/EtOH treated animals compared with Con/Con or ad libitum groups but
increased by 20% in the EtOH/EtOH group. * p < 0.05 vs. ad libitum and Con/Con groups; # p < 0.05 vs.
to Con/EtOH.

4. Discussion

These data collectively indicate that microglia previously activated by alcohol exposure can be
further exacerbated by a second alcohol binge. This point was demonstrated by: (a) potentiated
OX-42 immunoreactivity; (b) increased microglial number; and (c) increased TNF-α concentration in
EtOH/EtOH (double binge) rats compared with Con/EtOH (single binge) rats. The alcohol model used
produces a low-grade microglial activation state that is similar to an M2 phenotype [22,31]. However, as
the subsequent binge produced more pro-inflammatory-like effects, these alcohol-activated microglia
may also be primed. This enhanced response to a second binge aligns with the definition of
microglial priming, which is where a stimulus changes microglia to be more susceptible to and
over-respond to a second insult [33,63,64]. Primed microglia and/or an exacerbated microglial response
could lead to abnormally increased cell death and is a hypothesized etiology of neurodegenerative
disorders [28]. Furthermore, given that the majority of individuals with an AUD drink in an episodic
binge pattern [38,65], the repeated cycles of binge drinking with periods of withdrawal, and therefore
repeated microglial insult, may lead to even more dynamic microglial activation over time.

The first evidence of this potentiated microglia response in the double binge group was increased
immunoreactivity to the OX-42 antibody. Increased OX-42 immunoreactivity, which labels CR3,
is one of the earliest signs of microglial activation [22,46]. CR3 is associated with cell adhesion
necessary for removing pathogens or damaged/dying neurons [45,66,67]. Increased OX-42 staining
has been reported in a number of animal models of ethanol exposure [22,68–70]. The current study
confirms those findings; but furthers that work by showing that a second hit of binge ethanol exposure
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potentiates OX-42 immunoreactivity. A potentiated increase in OX-42 immunoreactivity, or CR3 density,
by ethanol is particularly interesting because CR3 is intimately involved in microglial priming [33].
The increased upregulation of CR3 in the EtOH/EtOH (double binge) rats compared with Con/EtOH
(single binge) rats suggests that binge ethanol exposure acts as a priming stimulus to microglia.
Morphology, though not specifically quantified, appeared consistent with a low grade/phenotype of
activation as cells were ramified and not amoeboid (e.g., Figure 1) [26]. A bushy, ramified microglial
morphology is also consistent with that observed in other pathologies that report a primed microglia
state [33,64,71]. Furthermore, despite the potentiation of CR3 receptor density, no changes in ED-1
or OX-6 expression were seen following the second binge. The lack of visible ED-1+ or OX-6+ cells
concurs with other reports in this model that do not show signs of classical microglial activation
following ethanol exposure [22,31,60].

Because multiple endpoints should be measured to understand the phenotype of microglia after
insult, functional outputs such as hallmark pro- and anti-inflammatory cytokines were measured to
better understand the type of microglial activation associated with a second “hit” of ethanol exposure.
No change in the concentration of the hallmark anti-inflammatory cytokine, IL-10, was observed in
either ethanol exposure group in the hippocampus or entorhinal cortex. The lack of IL-10 response
during intoxication confirms previous findings in this model, although IL-10 is decreased in a mouse
AUD model [22,23]. However, upregulation of TNF-α in the hippocampus in the EtOH/EtOH group
compared with all other groups suggests that the second binge promoted a pro-inflammatory state.
This finding is highly distinct from multiple previous reports using Majchrowicz-like models where
no effect of ethanol was observed on TNF-α concentrations [22,24,31] and highlights the impact
of repeated ethanol exposure on pro-inflammatory cytokine production and microglial activation.
The potentiation of TNF-α expression by the second hit of ethanol, much like the morphological
indices, is a common response for microglia that are primed and then hit with a secondary peripheral
immune insult [28,64,72]. In fact, alcohol and other drugs of abuse have been shown to prime the
TNF-α response to other immune stimulators [23,63], but these finding specifically suggest that alcohol
exposure can act as both the priming and secondary stimulus resulting in an increase in TNF-α.

In the Majchrowicz model, microglia loss was observed during the last days of intoxication [61],
whereas microglia proliferation occurs after the cessation of alcohol exposure, on the second day of
abstinence [31,60]. Therefore, Iba-1+ cell number was assessed to determine how multiple cycles of
ethanol affects microglia number. The single ethanol binge (Con/EtOH group) reduced the number of
Iba-1+ microglia, in both the hippocampus and entorhinal cortex. Our recent work supports that this
reduction is likely due to degeneration of microglia following 4-day binge exposure [61]. Interestingly,
the second binge (EtOH/EtOH group) resulted in an increased number of Iba-1+ microglia in the
hippocampus compared to either the control group or single binge (Con/EtOH) group. It is plausible
that the increase in Iba-1+ cells in the EtOH/EtOH group observed in the hippocampus is due to
microglial proliferation at two days following the first binge [22,31,60]. This effect also suggests
that ethanol does not significantly reduce these newly proliferated microglial cells. It is of note
that the effect of ethanol on microglia number varied by region: in the entorhinal cortex, both the
single and double binge resulted in a decrease in the number of microglia consistent with our recent
report [61]. The lack of increased Iba-1+ cells in the entorhinal cortex of EtOH/EtOH group is likely
related to the finding that microglia neither proliferate dramatically at two days post-binge in the
entorhinal cortex nor is there a significant increase in microglia number after seven days;, however,
both proliferation and increased Iba-1+ cells have been observed in the hippocampus at this same
time point [22,60]. Why microglia proliferate in the hippocampus but not entorhinal cortex after binge
ethanol exposure is puzzling. Neurons in the entorhinal cortex degenerate more robustly, peaking
at four days of exposure [5,7,8], which is followed by other signs of reactive microgliosis [22]. More
studies are necessary to fully understand the dynamic effects of alcohol on microglia number, especially
considering the recent discoveries that microglia contribute to synapse refinement and plasticity [25].
These data support the hypothesis that a second binge alcohol exposure exacerbates the microglial
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response, since an increase in the number of activated microglia would likely result in a potentiated
neuroimmune response during the second binge.

Hippocampal BDNF concentrations were determined in order to assess the impact of microglia
reactivity and changes in microglia number on the surrounding environment. BDNF plays a pivotal
role in neuronal integrity and its dysregulation is associated with neurodegeneration [73]. In the
Con/EtOH group, BDNF was decreased, the number of microglia were decreased and there was a
significant correlation between the number of microglia and BDNF protein expression. However,
in the EtOH/EtOH treated animals, where microglia were more activated and their numbers were
increased, a significantly higher BDNF concentration was observed, though this value did not correlate
significantly to microglia number. It is possible that the increase in BDNF concentrations is due to cells
other than microglia, such as astrocytes, neurons, and other CNS cells secreting BDNF [74]. In addition,
the effect of ethanol on BDNF expression is quite complex [75]. Nevertheless, the interplay between
the increased cytokine and neurotrophin production observed in the EtOH/EtOH group requires
further study to understand its functional implications.

The experimental design to use the same animals for both immunohistochemical and ELISA
experiments allowed for a series of correlations to help determine what aspect of ethanol exposure, in
this AUD model, was associated with microglial reactivity. OX-42 immunoreactivity did not correlate
to average dose per day or to the total dose of ethanol in either the Con/EtOH or EtOH/EtOH
groups. This lack of correlation is important as immune modulators such as LPS have dose-dependent
responses in microglia reactivity [76]. The lack of correlation between OX-42 and total dose of ethanol
suggests that ethanol potentiates the OX-42 response by acting as a secondary stimulus rather than
an additive effect of the accumulative dose. Moreover, no relationship between the number of Iba-1+
cells and OX-42 immunoreactivity were observed, supporting that increased OX-42 immunoreactivity
was a result of microglial activation and not an artifact of the change in cell number [77]. Correlations
were also used to examine the relationship between OX-42 immunoreactivity or Iba-1 cell number
and functional indices (cytokine/neurotrophin production). However, neither CR3 receptor (OX-42)
upregulation nor Iba-1+ cell number was significantly correlated with TNF-α expression. Interestingly,
the bimodal distribution of TNF-α production observed in the EtOH/EtOH group did map on to BECs.
Although the mechanism by which BECs are related to TNF-α were not measured, at minimum, this
correlation suggests that as BECs increase with repeated exposure, a primed microglial state may cause
increased pro-inflammatory cytokines. Finally, in relation to BDNF, only microglia cell number in the
Con/EtOH group showed a significant correlation with BDNF concentrations supporting the idea that
microglial dysfunction and subsequent loss of trophic factors may contribute to neurodegeneration,
especially alcoholic brain damage [61]. Correlations are not being interpreted as causation, but they do
provide direction for what aspects of alcohol-exposure impact microglia reactivity leading to a primed
microglial state.

Some evidence of classical activation has been observed in other AUD models, an effect
that may be attributable to species differences and/or variations in the duration and pattern of
exposure [30,69]. While previous reports suggested that the difference in microglia reactivity was due
to these aforementioned variations in AUD models, the current data in this report more definitively
indicates that it is the repeated insult that may drive the greater microglial response. For example,
a model of alcohol exposure with lower total doses of alcohol dispersed over a longer period of
time produced more OX-6 positive cells than the exposure used herein, where OX-6 expression may
have been an anomaly in a single animal [30]. The appearance of the OX-6+ cells, however, in both
models still appeared to be the bushy, ramified morphology associated with a low-level or M2-like
activation. Indeed, the only alcohol study, human or animal, where ED-1+ microglia have been
observed, is from a study in which rats underwent four cycles of a Majchrowicz-like model with three
days between binges. However, the high mortality rate and severe weight loss of rats in that report
make interpretations difficult. One interpretation is that microglial activation may have occurred due
to the stress of repetitive gavage and/or weight loss [57,78–80]. Thus, the current study specifically
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used a seven day abstinence period to allow rats to recover from four days of intoxication and the
significant withdrawal sequelae that occurs in this model [40]. Moreover, because some weight loss is
observed in the Majchrowicz model [40], repetitive gavage may be stressful [81], and both of these
aspects modulate microglial reactivity [78,82], a group with ad libitum access to food and water was
included. None of the measures of microglia activation were different between the ad libitum group
and the Con/Con group despite their slight weight loss and experience with gavage. Moreover, weight
loss did not correlate with any measure of microglial activation in animals receiving ethanol.

The potentiated microglia activation seen in this double binge AUD model suggests that the
microglial response can be altered by ethanol alone and supports the idea that chronic ethanol exposure
can elicit a more pro-inflammatory state than a single bout of binge exposure. The lack of expression of
ED-1 and morphology of OX-42+ and Iba-1+ cells support that even with the two binges, cells are not
fully or classically activated. However, microglia are “further” down the spectrum towards classical
activation than a single binge alone. These data coupled with the lack of evidence for classically
activated microglia in human alcoholic brain—whether the markers are not expressed or no one has
examined those particular markers—supports that initially microglia activation is likely a consequence
of alcoholic neuropathology and not a cause. Whether this increased response causes microglia
to over-respond to insult or if it makes the brain more susceptible to ongoing neuroinflammation
should be considered in future experiments. In addition, how these effects relate to changes in
neurodegeneration, specifically neuronal or volume loss, is an important area for future study. Because
microglia have the capacity to maintain low grade activation or a primed state for extensive periods
following insult, including alcohol exposure [22,83], the episodic nature of binge drinking would lead
to a cycle of repeated priming and over-response in individuals suffering from an AUD [18,38,65].
Understanding the mechanisms that underlie or contribute to alcohol-induced neurodegeneration may
provide a novel therapeutic target to ameliorate damage and prevent the downward spiral into an
AUD [14,84].

5. Conclusions

In summary, these studies present a novel view of the impact of alcohol abuse on microglial
activity. Specifically, data presented herein indicate that alcohol causes a shift in microglial phenotypes
to a primed state. Although this study focuses on how later bouts of alcohol can exacerbate the
microglial response, the implications of an alcohol-induced primed microglial state also extend to how
the microglia of alcoholics may respond to infections or other alcohol related immune responses in the
peripheral system. This research provides a context in which to consider the implications of microglia
on alcohol-induced neurodegeneration and further indicates that targeting the neuroimmune system
may alleviate deficits caused by excessive alcohol consumption.
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