21 research outputs found

    Mevalonate Diphosphate Decarboxylase MVD/Erg19 Is Required for Ergosterol Biosynthesis, Growth, Sporulation and Stress Tolerance in Aspergillus oryzae

    Get PDF
    Mevalonate diphosphate decarboxylase (MVD; EC 4.1.1.33) is a key enzyme of the mevalonic acid (MVA) pathway. In fungi, the MVA pathway functions as upstream of ergosterol biosynthesis, and MVD is also known as Erg19. Previously, we have identified Aoerg19 in Aspergillus oryzae using bioinformatic analysis. In this study, we showed that AoErg19 function is conserved using phylogenetic analysis and yeast complementation assay. Quantitative reverse transcription–PCR (qRT-PCR) indicated that Aoerg19 expression changed in different growth stages and under different forms of abiotic stress. Subcellular localization analysis showed that AoErg19 was located in the vacuole. Overexpression of Aoerg19 decreased the ergosterol content in A. oryzae, which may due to the feedback-mediated downregulation of Aoerg8. Consistent with the decrease in ergosterol content, both Aoerg19 overexpression and RNAi strains of A. oryzae are sensitive to abiotic stressors, including ergosterol biosynthesis inhibitor, temperature, salt and ethanol. Thus, we have identified the function of AoErg19 in A. oryzae, which may assist in genetic modification of MVA and the ergosterol biosynthesis pathway

    Effects of environment factors on the carbon fluxes of semi-fixed sandy land recovering from degradation

    Get PDF
    Shrub-dominated ecosystems in the semiarid Horqin Sandy Land are important terrestrial ecosystems, and substantially affect global ecological health and security. However, there have been few studies of climate change’s effects on the carbon fluxes (NEE, net ecosystem exchange; Reco, ecosystem respiration; GPP, gross primary productivity) when these ecosystems are recovering from degradation. We used the eddy covariance technique to determine carbon fluxes and climatic conditions in this ecosystem from 2017 to 2021. The semi-fixed sandy land functioned as a carbon sink in wet years (NEE equaled −14.14 and −126.14 g C m–2 yr–1 in 2019 and 2021, respectively), but was a carbon source in dry years (NEE equaled 48.50 and 51.17 g C m–2 yr–1 in 2017 and 2020, respectively) and a normal year (NEE equaled 74.66 g C m–2 yr–1 in 2018). As expected in these usually water-limited ecosystems, water availability (precipitation and soil water content) were the dominant drivers of NEE, Reco, and GPP, but temperature and photosynthetic photon flux density (PPFD) also played important roles in regulating NEE, Reco and GPP in this recovering semi-fixed sandy ecosystem. With future precipitation and temperature increases, and continuing vegetation restoration, carbon sequestration by this ecosystem is expected to increase. Long-term observations will be necessary to reveal the true source and sink intensities and their response to environmental factors

    Improvements in Soil Carbon and Nitrogen Capacities after Shrub Planting to Stabilize Sand Dunes in China’s Horqin Sandy Land

    No full text
    Caragana microphylla, a native perennial leguminous shrub, is widely used for desertification control in China’s Horqin Sandy Land. We investigated the effects of afforestation using C. microphylla in areas with fixed and active dunes on soil carbon (C) and nitrogen (N) storage in the soil total and light-fraction (LF) organic matter. Compared to the values in the control areas, soil organic carbon (SOC) storage to a depth of 100 cm increased by 88%, 74%, and 145% at 9, 15, and 31 years after shrub planting, respectively; the corresponding values were 68%, 61%, and 195% for total nitrogen (TN) storage, 109%, 199%, and 202% for LF organic carbon storage, and 203%, 337%, and 342% for LF nitrogen storage. The soil light-fraction (LF) organic matter contributed significantly to total SOC and TN storage, despite the low proportion of total soil mass accounted for by the LF dry matter. Thus, afforestation using C. microphylla was an effective way to sequester C and to restore degraded soils, but the process was slow; it would take more than 100 years to fully restore SOC storage in active dunes through afforestation with C. microphylla in the Horqin Sandy Land

    Soil microbial community responses to short-term nitrogen addition in China's Horqin Sandy Land.

    No full text
    Anthropogenic nitrogen (N) addition has increased soil nutrient availability, thereby affecting ecosystem processes and functions in N-limited ecosystems. Long-term N addition decreases plant biodiversity, but the effects of short-term N addition on soil microbial community is poorly understood. The present study examined the impacts of short-term N addition (NH4NO3) on these factors in a sandy grassland and semi-fixed sandy land in the Horqin Sandy Land. We measured the responses of soil microbial biomass C and N; on soil β-1,4-glucosidase (BG) and β-1,4-N-acetylglucosaminidase (NAG) activity; and soil microflora characteristics to N additions gradient with 0 (control), 5 (N5), 10 (N10), and 15 (N15) g N m-2 yr-1. The soil microbial biomass indices, NAG activity, and soil microflora characteristics did not differ significantly among the N levels, and there was no difference at the two sites. The competition for N between plants and soil microbes was not eliminated by short-term N addition due to the low soil nutrient and moisture contents, and the relationships among the original soil microbes did not change. However, N addition increased BG activity in the N5 and N10 additions in the sandy grassland, and in the N5, N10, and N15 additions in the semi-fixed sandy land. This may be due to increased accumulation and fixation of plant litter into soils in response to N addition, leading to increased microbial demand for a C source and increased soil BG activity. Future research should explore the relationships between soil microbial community and N addition at the two sites

    Spatial pattern of soil organic carbon and total nitrogen, and analysis of related factors in an agro-pastoral zone in Northern China

    No full text
    <div><p>The spatial pattern of soil organic carbon (SOC) and total nitrogen (TN) densities plays a profound important role in estimating carbon and nitrogen budgets. Naiman Banner located in northern China was chosen as research site, a total of 332 soil samples were taken in a depth of 100 cm from the low hilly land in the southern part, sandy land in the middle part and an alluvial plain in the northern part of the county. The results showed that SOC and TN density initially decreased and then increased from the north to the south, The highest densities, were generally in the south, with the lowest generally in the middle part. The SOC and TN densities in cropland were significantly greater than those in woodland and grassland in the alluvial plains and for Naiman as a whole. The woodland SOC and TN density were higher than those of grassland in the low hilly land, and higher densities of SOC and TN in grassland than woodland in the sandy land and low hilly land. There were significant differences in SOC and TN densities among the five soil types of Cambisols, Arenosols, Gleysols, Argosols, and Kastanozems. In addition, SOC and TN contents generally decreased with increasing soil depth, but increased below a depth of 40 cm in the Cambisols and became roughly constant at this depth in the Kastanozems. There is considerable potential to sequester carbon and nitrogen in the soil via the conversion of degraded sandy land into woodland and grassland in alluvial plain, and more grassland should be established in sandy land and low hilly land.</p></div

    Spatial pattern of soil organic carbon and total nitrogen, and analysis of related factors in an agro-pastoral zone in Northern China - Fig 7

    No full text
    <p><b>Vertical distribution of the (a) soil organic carbon (SOC) density and (b) total nitrogen (TN) density to a depth of 100 cm. Data points were plotted at the bottom of each soil layer.</b> Values are means ± SE.</p

    Parameters of the variogram models for the soil organic carbon (SOC) and total nitrogen (TN) densities to a depth of 100 cm in Naiman Banner.

    No full text
    <p>Parameters of the variogram models for the soil organic carbon (SOC) and total nitrogen (TN) densities to a depth of 100 cm in Naiman Banner.</p

    The distribution of soil types in Naiman banner.

    No full text
    <p><b>Reprinted from [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0197451#pone.0197451.ref030" target="_blank">30</a>] under a CC BY license, with permission from [Wang Guoguang], original copyright [1984].</b> There are six soil types in Naiman Banner according to the second national soil survey: Arenosols cover 58.2% of the total area, Cambisols cover 20.0%, Argosols cover 12.1%, Kastanozems cover 8.4%, Gleysols cover 1.2%, and Solonchaks cover 0.1%.</p
    corecore