21,167 research outputs found

    Electron Band Structure in a Two Dimensional Periodic Magnetic Field

    Full text link
    In this paper we study the energy spectrum of a two dimensional electron gas (2DEG) in a two dimensional periodic magnetic field. Both a square magnetic lattice and a triangular one are considered. We consider the general case where the magnetic field in a cell can be of any shape. A general feature of the band structure is bandwidth oscillation as a function of the Landau index. A triangular magnetic lattice on a 2DEG can be realized by the vortex lattice of a superconductor film coated on top of a heterojunction. Our calculation indicates a way of relating the energy spectrum of the 2DEG to the vortex structure. We have also derived conditions under which the effects of a weak magnetic modulation, periodic or not, may be reproduced by an electric potential modulation, and vice versa.Comment: 16 pages in TeX and 5 uuencoded figure

    Nuclear mass predictions based on Bayesian neural network approach with pairing and shell effects

    Full text link
    Bayesian neural network (BNN) approach is employed to improve the nuclear mass predictions of various models. It is found that the noise error in the likelihood function plays an important role in the predictive performance of the BNN approach. By including a distribution for the noise error, an appropriate value can be found automatically in the sampling process, which optimizes the nuclear mass predictions. Furthermore, two quantities related to nuclear pairing and shell effects are added to the input layer in addition to the proton and mass numbers. As a result, the theoretical accuracies are significantly improved not only for nuclear masses but also for single-nucleon separation energies. Due to the inclusion of the shell effect, in the unknown region, the BNN approach predicts a similar shell-correction structure to that in the known region, e.g., the predictions of underestimation of nuclear mass around the magic numbers in the relativistic mean-field model. This manifests that better predictive performance can be achieved if more physical features are included in the BNN approach.Comment: 15 pages, 4 figures, and 3 table

    Self-consistent relativistic quasiparticle random-phase approximation and its applications to charge-exchange excitations and β\beta-decay half-lives

    Get PDF
    The self-consistent quasiparticle random-phase approximation (QRPA) approach is formulated in the canonical single-nucleon basis of the relativistic Hatree-Fock-Bogoliubov (RHFB) theory. This approach is applied to study the isobaric analog states (IAS) and Gamov-Teller resonances (GTR) by taking Sn isotopes as examples. It is found that self-consistent treatment of the particle-particle residual interaction is essential to concentrate the IAS in a single peak for open-shell nuclei and the Coulomb exchange term is very important to predict the IAS energies. For the GTR, the isovector pairing can increase the calculated GTR energy, while the isoscalar pairing has an important influence on the low-lying tail of the GT transition. Furthermore, the QRPA approach is employed to predict nuclear β\beta-decay half-lives. With an isospin-dependent pairing interaction in the isoscalar channel, the RHFB+QRPA approach almost completely reproduces the experimental β\beta-decay half-lives for nuclei up to the Sn isotopes with half-lives smaller than one second. Large discrepancies are found for the Ni, Zn, and Ge isotopes with neutron number smaller than 5050, as well as the Sn isotopes with neutron number smaller than 8282. The potential reasons for these discrepancies are discussed in detail.Comment: 34 pages, 14 figure

    Nuclear β+\beta^+/EC decays in covariant density functional theory and the impact of isoscalar proton-neutron pairing

    Full text link
    Self-consistent proton-neutron quasiparticle random phase approximation based on the spherical nonlinear point-coupling relativistic Hartree-Bogoliubov theory is established and used to investigate the β+\beta^+/EC-decay half-lives of neutron-deficient Ar, Ca, Ti, Fe, Ni, Zn, Cd, and Sn isotopes. The isoscalar proton-neutron pairing is found to play an important role in reducing the decay half-lives, which is consistent with the same mechanism in the β\beta decays of neutron-rich nuclei. The experimental β+\beta^+/EC-decay half-lives can be well reproduced by a universal isoscalar proton-neutron pairing strength.Comment: 12 pages, 4 figure

    Bose-Einstein Condensation with Entangled Order Parameter

    Full text link
    We propose a practically accessible non-mean-field ground state of Bose-Einstein condensation (BEC), which occurs in an interspecies two-particle entangled state, and is thus described by an entangled order parameter. A suitably defined entanglement entropy is used as the characterization of the non-mean-field nature, and is found to persist in a wide parameter regime. The interspecies entanglement leads to novel interference terms in the dynamical equations governing the single particle orbital wavefunctions. Experimental feasibility and several methods of probe are discussed. We urge the study of multi-channel scattering between different species of atoms.Comment: V1: 5 pages, 4 figures. Accepted by Phys. Rev. Lett.; V2: A couple of very minor typos corrected, publishe
    • …
    corecore