5 research outputs found

    Large-scale field application of RNAi technology reducing Israeli acute paralysis virus disease in honey bees (Apis mellifera, Hymenoptera: Apidae).

    Get PDF
    The importance of honey bees to the world economy far surpasses their contribution in terms of honey production; they are responsible for up to 30% of the world's food production through pollination of crops. Since fall 2006, honey bees in the U.S. have faced a serious population decline, due in part to a phenomenon called Colony Collapse Disorder (CCD), which is a disease syndrome that is likely caused by several factors. Data from an initial study in which investigators compared pathogens in honey bees affected by CCD suggested a putative role for Israeli Acute Paralysis Virus, IAPV. This is a single stranded RNA virus with no DNA stage placed taxonomically within the family Dicistroviridae. Although subsequent studies have failed to find IAPV in all CCD diagnosed colonies, IAPV has been shown to cause honey bee mortality. RNA interference technology (RNAi) has been used successfully to silence endogenous insect (including honey bee) genes both by injection and feeding. Moreover, RNAi was shown to prevent bees from succumbing to infection from IAPV under laboratory conditions. In the current study IAPV specific homologous dsRNA was used in the field, under natural beekeeping conditions in order to prevent mortality and improve the overall health of bees infected with IAPV. This controlled study included a total of 160 honey bee hives in two discrete climates, seasons and geographical locations (Florida and Pennsylvania). To our knowledge, this is the first successful large-scale real world use of RNAi for disease control

    Effective Gene Silencing in a Microsporidian Parasite Associated with Honeybee (Apis mellifera) Colony Declines ▿ †

    No full text
    Honeybee colonies are vulnerable to parasites and pathogens ranging from viruses to vertebrates. An increasingly prevalent disease of managed honeybees is caused by the microsporidian Nosema ceranae. Microsporidia are basal fungi and obligate parasites with much-reduced genomic and cellular components. A recent genome-sequencing effort for N. ceranae indicated the presence of machinery for RNA silencing in this species, suggesting that RNA interference (RNAi) might be exploited to regulate Nosema gene expression within bee hosts. Here we used controlled laboratory experiments to show that double-stranded RNA homologous to specific N. ceranae ADP/ATP transporter genes can specifically and differentially silence transcripts encoding these proteins. This inhibition also affects Nosema levels and host physiology. Gene silencing could be mediated solely by Nosema or in concert with known systemic RNAi mechanisms in their bee hosts. These results are novel for the microsporidia and provide a possible avenue for controlling a disease agent implicated in severe honeybee colony losses. Moreover, since microsporidia are pathogenic in several known veterinary and human diseases, this advance may have broader applications in the future for disease control

    Prevention of a dengue outbreak via the large-scale deployment of Sterile Insect Technology in a Brazilian city: a prospective studyResearch in context

    No full text
    Summary: Background: Dengue is a global problem that seems to be worsening, as hyper-urbanization associated with climate change has led to a significant increase in the abundance and geographical spread of its principal vector, the Aedes aegypti mosquito. Currently available solutions have not been able to stop the spread of dengue which shows the urgent need to implement alternative technologies as practical solutions. In a previous pilot trial, we demonstrated the efficacy and safety of the method ‘Natural Vector Control’ (NVC) in suppressing the Ae. aegypti vector population and in blocking the occurrence of an outbreak of dengue in the treated areas. Here, we expand the use of the NVC program in a large-scale 20 months intervention period in an entire city in southern Brazil. Methods: Sterile male mosquitoes were produced from locally sourced Ae. aegypti mosquitoes by using a treatment that includes double-stranded RNA and thiotepa. Weekly massive releases of sterile male mosquitoes were performed in predefined areas of Ortigueira city from November 2020 to July 2022. Mosquito monitoring was performed by using ovitraps during the entire intervention period. Dengue incidence data was obtained from the Brazilian National Disease Surveillance System. Findings: During the two epidemiological seasons, the intervention in Ortigueira resulted in up to 98.7% suppression of live progeny of field Ae. aegypti mosquitoes recorded over time. More importantly, when comparing the 2020 and 2022 dengue outbreaks that occurred in the region, the post-intervention dengue incidence in Ortigueira was 97% lower compared to the control cities. Interpretation: The NVC method was confirmed to be a safe and efficient way to suppress Ae. aegypti field populations and prevent the occurrence of a dengue outbreak. Importantly, it has been shown to be applicable in large-scale, real-world conditions. Funding: This study was funded by Klabin S/A and Forrest Innovations Ltd

    Amelanchier asiatica Endl.

    No full text
    原著和名: ザイフリボク シデザクラ科名: バラ科 = Rosaceae採集地: 香川県 小豆島 (讃岐 小豆島)採集日: 1982/4/18採集者: 萩庭丈壽整理番号: JH035196国立科学博物館整理番号: TNS-VS-98519
    corecore