437 research outputs found

    Charge Transport in Polymer Ion Conductors: a Monte Carlo Study

    Full text link
    Diffusion of ions through a fluctuating polymeric host is studied both by Monte Carlo simulation of the complete system dynamics and by dynamic bond percolation (DBP) theory. Comparison of both methods suggests a multiscale-like approach for calculating the diffusion coefficients of the ion

    Dynamic percolation theory for particle diffusion in a polymer network

    Full text link
    Tracer-diffusion of small molecules through dense systems of chain polymers is studied within an athermal lattice model, where hard core interactions are taken into account by means of the site exclusion principle. An approximate mapping of this problem onto dynamic percolation theory is proposed. This method is shown to yield quantitative results for the tracer correlation factor of the molecules as a function of density and chain length provided the non-Poisson character of temporal renewals in the disorder configurations is properly taken into account

    Effects of tunnelling and asymmetry for system-bath models of electron transfer

    Full text link
    We apply the newly derived nonadiabatic golden-rule instanton theory to asymmetric models describing electron-transfer in solution. The models go beyond the usual spin-boson description and have anharmonic free-energy surfaces with different values for the reactant and product reorganization energies. The instanton method gives an excellent description of the behaviour of the rate constant with respect to asymmetry for the whole range studied. We derive a general formula for an asymmetric version of Marcus theory based on the classical limit of the instanton and find that this gives significant corrections to the standard Marcus theory. A scheme is given to compute this rate based only on equilibrium simulations. We also compare the rate constants obtained by the instanton method with its classical limit to study the effect of tunnelling and other quantum nuclear effects. These quantum effects can increase the rate constant by orders of magnitude.Comment: 10 pages, 3 figure

    A very general rate expression for charge hopping in semiconducting polymers

    Get PDF
    We propose an expression of the hopping rate between localized states in semiconducting disordered polymers that contains the most used rates in the literature as special cases. We stress that these rates cannot be obtained directly from electron transfer rate theories as it is not possible to define diabatic localized states if the localization is caused by disorder, as in most polymers, rather than nuclear polarization effects. After defining the separate classes of accepting and inducing nuclear modes in the system, we obtain a general expression of the hopping rate. We show that, under the appropriate limits, this expression reduces to (i) single-phonon rate expression or (ii) the Miller-Abrahams rate or (iii) a multi-phonon expression. The description of these limits from a more general expression is useful to interpolate between them, to validate the assumptions of each limiting case, and to define the simplest rate expression that still captures the main features of the charge transport. When the rate expression is fed with a range of realistic parameters the deviation from the Miller-Abrahams rate is large or extremely large, especially for hopping toward lower energy states, due to the energy gap law

    Current Profiles of Molecular Nanowires; DFT Green Function Representation

    Full text link
    The Liouville-space Green function formalism is used to compute the current density profile across a single molecule attached to electrodes. Time ordering is maintained in real, physical, time, avoiding the use of artificial time loops and backward propagations. Closed expressions for molecular currents, which only require DFT calculations for the isolated molecule, are derived to fourth order in the molecule/electrode coupling.Comment: 21 page

    Nucleic Acids Res

    Get PDF
    Cells adapt to environmental changes by efficiently adjusting gene expression programs. Staphylococcus aureus, an opportunistic pathogenic bacterium, switches between defensive and offensive modes in response to quorum sensing signal. We identified and studied the structural characteristics and dynamic properties of the core regulatory circuit governing this switch by deterministic and stochastic computational methods, as well as experimentally. This module, termed here Double Selector Switch (DSS), comprises the RNA regulator RNAIII and the transcription factor Rot, defining a double-layered switch involving both transcriptional and post-transcriptional regulations. It coordinates the inverse expression of two sets of target genes, immuno-modulators and exotoxins, expressed during the defensive and offensive modes, respectively. Our computational and experimental analyses show that the DSS guarantees fine-tuned coordination of the inverse expression of its two gene sets, tight regulation, and filtering of noisy signals. We also identified variants of this circuit in other bacterial systems, suggesting it is used as a molecular switch in various cellular contexts and offering its use as a template for an effective switching device in synthetic biology studies
    corecore