2,273 research outputs found
Effect of an InP/InGaAs Interface on Spin-orbit Interaction in InAlAs/InGaAs Heterostructures
We report the effect of the insertion of an InP/InGaAs
Interface on Rashba spin-orbit interaction in
InAlAs/InGaAs quantum wells. A small spin
split-off energy in InP produces a very intriguing band lineup in the valence
bands in this system. With or without this InP layer above the
InGaAs well, the overall values of the spin-orbit coupling
constant turned out to be enhanced or diminished for samples with the
front- or back-doping position, respectively. These experimental results, using
weak antilocalization analysis, are compared with the results of the
theory. The actual conditions of the interfaces and
materials should account for the quantitative difference in magnitude between
the measurements and calculations.Comment: Submitted for publication; v2 to adjust Eq.6; v3 to correct the
figure file name; v4, a revised version accepted for publication in Phys.
Rev.
Nonlinear realization of local symmetries of AdS space
Coset methods are used to construct the action describing the dynamics
associated with the spontaneous breaking of the local symmetries of AdS_{d+1}
space due to the embedding of an AdS_d brane. The resulting action is an
SO(2,d) invariant AdS form of the Einstein-Hilbert action, which in addition to
the AdS_d gravitational vielbein, also includes a massive vector field
localized on the brane. Its long wavelength dynamics is the same as a massive
Abelian vector field coupled to gravity in AdS_d space.Comment: 17 page
Gauging Nonlinear Supersymmetry
Coset methods are used to construct the action describing the dynamics
associated with the spontaneous breaking of the local supersymmetries. The
resulting action is an invariant form of the Einstein-Hilbert action, which in
addition to the gravitational vierbein, also includes a massive gravitino
field. Invariant interactions with matter and gauge fields are also
constructed. The effective Lagrangian describing processes involving the
emission or absorption of a single light gravitino is analyzed.Comment: 20 pages, no figure
Focusing of Spin Polarization in Semiconductors by Inhomogeneous Doping
We study the evolution and distribution of non-equilibrium electron spin
polarization in n-type semiconductors within the two-component drift-diffusion
model in an applied electric field. Propagation of spin-polarized electrons
through a boundary between two semiconductor regions with different doping
levels is considered. We assume that inhomogeneous spin polarization is created
locally and driven through the boundary by the electric field. The electric
field distribution and spin polarization distribution are calculated
numerically. We show that an initially created narrow region of spin
polarization can be further compressed and amplified near the boundary. Since
the boundary involves variation of doping but no real interface between two
semiconductor materials, no significant spin-polarization loss is expected. The
proposed mechanism will be therefore useful in designing new spintronic
devices
Superconformal Symmetry, The Supercurrent And Non-BPS Brane Dynamics
The Noether currents associated with the non-linearly realized
super-Poincare' symmetries of the Green-Schwarz (Nambu-Goto-Akulov-Volkov)
action for a non-BPS p=2 brane embedded in a N=1, D=4 target superspace are
constructed. The R symmetry current, the supersymmetry currents, the
energy-momentum tensor and the scalar central charge current are shown to be
components of a world volume supercurrent. The centrally extended
superconformal transformations are realized on the Nambu-Goldstone boson and
fermion fields of the non-BPS brane. The superconformal currents form
supersymmetry multiplets with the world volume conformal central charge current
and special conformal current being the primary components of the supersymmetry
multiplets containing all the currents. Correspondingly the superconformal
symmetry breaking terms form supersymmetry multiplets the components of which
are obtainable as supersymmetry transformations of the primary currents'
symmetry breaking terms.Comment: 27 pages, LaTeX, Summary Tables Adde
Self-similar solution of fast magnetic reconnection: Semi-analytic study of inflow region
An evolutionary process of the fast magnetic reconnection in ``free space''
which is free from any influence of outer circumstance has been studied
semi-analytically, and a self-similarly expanding solution has been obtained.
The semi-analytic solution is consistent with the results of our numerical
simulations performed in our previous paper (see Nitta et al. 2001). This
semi-analytic study confirms the existence of self-similar growth. On the other
hand, the numerical study by time dependent computer simulation clarifies the
stability of the self-similar growth with respect to any MHD mode. These
results confirm the stable self-similar evolution of the fast magnetic
reconnection system.Comment: 15 pages, 7 figure
- …