21 research outputs found

    A Filmless Radiology Department in a Full Digital Regional Hospital: Quantitative Evaluation of the Increased Quality and Efficiency

    Get PDF
    Reggio Emilia hospital installed Picture Archiving and Communications Systems (PACS) as the final step towards a completely digital clinical environment completing the HIS/EMR and 1,400 web/terminals for patient information access. Financial benefits throughout the hospital were assessed upfront and measured periodically. Key indicators (radiology exam turnaround time, number of radiology procedures performed, inpatients length of stay before and after the PACS implementation, etc.) were analyzed and values were statistically tested to assess workflow and productivity improvements. The hospital went “filmless” in 28 weeks. Between the half of 2004 and the respective period in 2003, overall Radiology Department productivity increased by 12%, TAT improved by more than 60%. Timelier patient care resulted in decreased lengths of stay. Neurology alone experienced a 12% improvement in average patient stay. To quantify the impact of PACS on the average hospital stays and the expected productivity benefits to inpatient productivity were used a “high level” and a “detailed” business model. Annual financial upsides have exceeded $1.9 millions/year. A well-planned PACS deployment simplifies imaging workflow and improves patient care throughout the hospital while delivering substantial financial benefits. Staff buy-in was the key in this process and on-going training and process monitoring are a must

    Contrast-enhanced spectral mammography in neoadjuvant chemotherapy monitoring: a comparison with breast magnetic resonance imaging

    Get PDF
    Background: Neoadjuvant-chemotherapy (NAC) is considered the standard treatment for locally advanced breast carcinomas. Accurate assessment of disease response is fundamental to increase the chances of successful breast-conserving surgery and to avoid local recurrence. The purpose of this study was to compare contrast-enhanced spectral mammography (CESM) and contrast-enhanced-MRI (MRI) in the evaluation of tumor response to NAC.Methods: This prospective study was approved by the institutional review board and written informed consent was obtained. Fifty-four consenting women with breast cancer and indication of NAC were consecutively enrolled between October 2012 and December 2014. Patients underwent both CESM and MRI before, during and after NAC. MRI was performed first, followed by CESM within 3 days. Response to therapy was evaluated for each patient, comparing the size of the residual lesion measured on CESM and MRI performed after NAC to the pathological response on surgical specimens (gold standard), independently of and blinded to the results of the other test. The agreement between measurements was evaluated using Lin's coefficient. The agreement between measurements using CESM and MRI was tested at each step of the study, before, during and after NAC. And last of all, the variation in the largest dimension of the tumor on CESM and MRI was assessed according to the parameters set in RECIST 1.1 criteria, focusing on pathological complete response (pCR).Results: A total of 46 patients (85%) completed the study. CESM predicted pCR better than MRI (Lin's coefficient 0.81 and 0.59, respectively). Both methods tend to underestimate the real extent of residual tumor (mean 4.1mm in CESM, 7.5mm in MRI). The agreement between measurements using CESM and MRI was 0.96, 0.94 and 0.76 before, during and after NAC respectively. The distinction between responders and non-responders with CESM and MRI was identical for 45/46 patients. In the assessment of CR, sensitivity and specificity were 100% and 84%, respectively, for CESM, and 87% and 60% for MRI.Conclusion: CESM and MRI lesion size measurements were highly correlated. CESM seems at least as reliable as MRI in assessing the response to NAC, and may be an alternative if MRI is contraindicated or its availability is limited

    Validation of a new fully automated software for 2D digital mammographic breast density evaluation in predicting breast cancer risk.

    Get PDF
    We compared accuracy for breast cancer (BC) risk stratification of a new fully automated system (DenSeeMammo-DSM) for breast density (BD) assessment to a non-inferiority threshold based on radiologists' visual assessment. Pooled analysis was performed on 14,267 2D mammograms collected from women aged 48-55 years who underwent BC screening within three studies: RETomo, Florence study and PROCAS. BD was expressed through clinical Breast Imaging Reporting and Data System (BI-RADS) density classification. Women in BI-RADS D category had a 2.6 (95% CI 1.5-4.4) and a 3.6 (95% CI 1.4-9.3) times higher risk of incident and interval cancer, respectively, than women in the two lowest BD categories. The ability of DSM to predict risk of incident cancer was non-inferior to radiologists' visual assessment as both point estimate and lower bound of 95% CI (AUC 0.589; 95% CI 0.580-0.597) were above the predefined visual assessment threshold (AUC 0.571). AUC for interval (AUC 0.631; 95% CI 0.623-0.639) cancers was even higher. BD assessed with new fully automated method is positively associated with BC risk and is not inferior to radiologists' visual assessment. It is an even stronger marker of interval cancer, confirming an appreciable masking effect of BD that reduces mammography sensitivity

    A straightforward multiparametric quality control protocol for proton magnetic resonance spectroscopy: Validation and comparison of various 1.5 T and 3 T clinical scanner systems

    Get PDF
    Purpose: The aim of this study was to propose and validate across various clinical scanner systems a straightforward multiparametric quality assurance procedure for proton magnetic resonance spectroscopy (MRS). Methods: Eighteen clinical 1.5 T and 3 T scanner systems for MRS, from 16 centres and 3 different manufacturers, were enrolled in the study. A standard spherical water phantom was employed by all centres. The acquisition protocol included 3 sets of single (isotropic) voxel (size 20 mm) PRESS acquisitions with unsuppressed water signal and acquisition voxel position at isocenter as well as off-center, repeated 4/5 times within approximately 2 months. Water peak linewidth (LW) and area under the water peak (AP) were estimated. Results: LW values [mean (standard deviation)] were 1.4 (1.0) Hz and 0.8 (0.3) Hz for 3 T and 1.5 T scanners, respectively. The mean (standard deviation) (across all scanners) coefficient of variation of LW and AP for different spatial positions of acquisition voxel were 43% (20%) and 11% (11%), respectively. The mean (standard deviation) phantom T2 values were 1145 (50) ms and 1010 (95) ms for 1.5 T and 3 T scanners, respectively. The mean (standard deviation) (across all scanners) coefficients of variation for repeated measurements of LW, AP and T2 were 25% (20%), 10% (14%) and 5% (2%), respectively. Conclusions: We proposed a straightforward multiparametric and not time consuming quality control protocol for MRS, which can be included in routine and periodic quality assurance procedures. The protocol has been validated and proven to be feasible in a multicentre comparison study of a fairly large number of clinical 1.5 T and 3 T scanner systems

    Mortality Prediction of COVID-19 Patients Using Radiomic and Neural Network Features Extracted from a Wide Chest X-ray Sample Size: A Robust Approach for Different Medical Imbalanced Scenarios

    No full text
    Aim: The aim of this study was to develop robust prognostic models for mortality prediction of COVID-19 patients, applicable to different sets of real scenarios, using radiomic and neural network features extracted from chest X-rays (CXRs) with a certified and commercially available software. Methods: 1816 patients from 5 different hospitals in the Province of Reggio Emilia were included in the study. Overall, 201 radiomic features and 16 neural network features were extracted from each COVID-19 patient’s radiography. The initial dataset was balanced to train the classifiers with the same number of dead and survived patients, randomly selected. The pipeline had three main parts: balancing procedure; three-step feature selection; and mortality prediction with radiomic features through three machine learning (ML) classification models: AdaBoost (ADA), Quadratic Discriminant Analysis (QDA) and Random Forest (RF). Five evaluation metrics were computed on the test samples. The performance for death prediction was validated on both a balanced dataset (Case 1) and an imbalanced dataset (Case 2). Results: accuracy (ACC), area under the ROC-curve (AUC) and sensitivity (SENS) for the best classifier were, respectively, 0.72 ± 0.01, 0.82 ± 0.02 and 0.84 ± 0.04 for Case 1 and 0.70 ± 0.04, 0.79 ± 0.03 and 0.76 ± 0.06 for Case 2. These results show that the prediction of COVID-19 mortality is robust in a different set of scenarios. Conclusions: Our large and varied dataset made it possible to train ML algorithms to predict COVID-19 mortality using radiomic and neural network features of CXRs

    Mortality Prediction of COVID-19 Patients Using Radiomic and Neural Network Features Extracted from a Wide Chest X-ray Sample Size: A Robust Approach for Different Medical Imbalanced Scenarios

    No full text
    Aim: The aim of this study was to develop robust prognostic models for mortality prediction of COVID-19 patients, applicable to different sets of real scenarios, using radiomic and neural network features extracted from chest X-rays (CXRs) with a certified and commercially available software. Methods: 1816 patients from 5 different hospitals in the Province of Reggio Emilia were included in the study. Overall, 201 radiomic features and 16 neural network features were extracted from each COVID-19 patient's radiography. The initial dataset was balanced to train the classifiers with the same number of dead and survived patients, randomly selected. The pipeline had three main parts: balancing procedure; three-step feature selection; and mortality prediction with radiomic features through three machine learning (ML) classification models: AdaBoost (ADA), Quadratic Discriminant Analysis (QDA) and Random Forest (RF). Five evaluation metrics were computed on the test samples. The performance for death prediction was validated on both a balanced dataset (Case 1) and an imbalanced dataset (Case 2). Results: accuracy (ACC), area under the ROC-curve (AUC) and sensitivity (SENS) for the best classifier were, respectively, 0.72 +/- 0.01, 0.82 +/- 0.02 and 0.84 +/- 0.04 for Case 1 and 0.70 +/- 0.04, 0.79 +/- 0.03 and 0.76 +/- 0.06 for Case 2. These results show that the prediction of COVID-19 mortality is robust in a different set of scenarios. Conclusions: Our large and varied dataset made it possible to train ML algorithms to predict COVID-19 mortality using radiomic and neural network features of CXRs
    corecore