4 research outputs found

    āđāļšāļšāļˆāļģāļĨāļ­āļ‡āļ—āļēāļ‡āļ„āļ“āļīāļ•āļĻāļēāļŠāļ•āļĢāđŒāđāļĨāļ°āļāļēāļĢāļŠāļĢāđ‰āļēāļ‡āļ āļēāļžāļ™āļēāļĄāļ˜āļĢāļĢāļĄāļ‚āļ­āļ‡āļāļēāļĢāļāļĢāļ°āļˆāļēāļĒ āļ•āļąāļ§āļ‚āļ­āļ‡āļ•āļ°āļāļ­āļ™āđƒāļ™āļ­āđˆāļēāļ§āļšāđ‰āļēāļ™āļ”āļ­āļ™ āļˆāļąāļ‡āļŦāļ§āļąāļ”āļŠāļļāļĢāļēāļĐāļŽāļĢāđŒāļ˜āļēāļ™āļĩ

    No full text
    Thesis (M.Sc.(Applied Mathematics))--Prince of Songkla University, 2017Sediment transport is an issue that calls for changes in the environment. In this study, mathematical models are applied to simulate and visualize the movement of sediments at Bandon Bay in Surat Thani province as a case study. A mathematical model is used to study the sediment distribution. This is done by using the Shallow Water Equations (SWEs) combined with a sediment transport Equation which is based on the conservation of mass equation. The model equations for the sediment distribution are validated by comparing it with the Grass Model. The model is solved numerically by using the finite volume methods which are based on the integral form of the conservation laws. Godunov method is used to approximate the functions for solving the model which is a Riemann problem. The functions of Godunov method is computed by using the Harten Lax VanLee approach (HLL) to approximate the numerical flux. Simulation is carried out and visualization by VirtualSed3D program. The result shows that the sediment distribution depends on the porosity of sediment, the continuous movement of wave and also the depth of a particular area under consideration. This research can be applied for other regions based on the same procedure.āļāļēāļĢāđ€āļ„āļĨāļ·āđˆāļ­āļ™āļ—āļĩāđˆāļ‚āļ­āļ‡āļ•āļ°āļāļ­āļ™āđ€āļ›āđ‡āļ™āļ›āļąāļāļŦāļēāļŠāļģāļ„āļąāļāļ—āļĩāđˆāļāđˆāļ­āđƒāļŦāđ‰āđ€āļāļīāļ”āļāļēāļĢāđ€āļ›āļĨāļĩāđˆāļĒāļ™āđāļ›āļĨāļ‡āļ—āļēāļ‡āļ”āđ‰āļēāļ™āļŠāļīāđˆāļ‡āđāļ§āļ”āļĨāđ‰āļ­āļĄ āđƒāļ™āļāļēāļĢāļĻāļķāļāļĐāļēāļ„āļĢāļąāđ‰āļ‡āļ™āļĩāđ‰āļ—āļģāļāļēāļĢāļ›āļĢāļ°āļĒāļļāļāļ•āđŒāļ•āļąāļ§āđāļšāļšāļ—āļēāļ‡āļ„āļ“āļīāļ•āļĻāļēāļŠāļ•āļĢāđŒāđ€āļžāļ·āđˆāļ­āļ—āļģāļāļēāļĢāļˆāļģāļĨāļ­āļ‡āđāļĨāļ°āđāļŠāļ”āļ‡āļ āļēāļžāļ™āļēāļĄāļ˜āļĢāļĢāļĄāļāļēāļĢāđ€āļ„āļĨāļ·āđˆāļ­āļ™āļ—āļĩāđˆāļ‚āļ­āļ‡āļ•āļ°āļāļ­āļ™ āđƒāļ™āļ­āđˆāļēāļ§āļšāđ‰āļēāļ™āļ”āļ­āļ™ āļˆāļąāļ‡āļŦāļ§āļąāļ”āļŠāļļāļĢāļēāļĐāļŽāļĢāđŒāļ˜āļēāļ™āļĩ āļ•āļąāļ§āđāļšāļšāļ—āļēāļ‡āļ„āļ“āļīāļ•āļĻāļēāļŠāļ•āļĢāđŒāļ—āļĩāđˆāđƒāļŠāđ‰āđƒāļ™āļāļēāļĢāļĻāļķāļāļĐāļēāļāļēāļĢāļŸāļļāđ‰āļ‡āļāļĢāļ°āļˆāļēāļĒāļ‚āļ­āļ‡āļ•āļ°āļāļ­āļ™ āđƒāļŠāđ‰āļŠāļĄāļāļēāļĢāļ™āđ‰āļģāļ•āļ·āđ‰āļ™āļĢāļ§āļĄāļāļąāļšāļŠāļĄāļāļēāļĢāļāļēāļĢāđ€āļ„āļĨāļ·āđˆāļ­āļ™āļ—āļĩāđˆāļ‚āļ­āļ‡āļ•āļ°āļāļ­āļ™āđ‚āļ”āļĒāđƒāļŠāđ‰āđāļ™āļ§āļ„āļ§āļēāļĄāļ„āļīāļ”āđ€āļ”āļĩāļĒāļ§āļāļąāļšāļāļēāļĢāđ€āļ„āļĨāļ·āđˆāļ­āļ™āļ—āļĩāđˆāļ‚āļ­āļ‡āļ™āđ‰āļģāļ āļēāļĒāđƒāļ•āđ‰āļāļŽāļāļēāļĢāļ­āļ™āļļāļĢāļąāļāļĐāđŒāļĄāļ§āļĨ āđāļĨāļ°āđ„āļ”āđ‰āļ—āļģāļāļēāļĢāđ€āļ›āļĢāļĩāļĒāļšāđ€āļ—āļĩāļĒāļšāļ„āļ§āļēāļĄāļ–āļđāļāļ•āđ‰āļ­āļ‡āļ‚āļ­āļ‡āļŠāļĄāļāļēāļĢāļāļēāļĢāđ€āļ„āļĨāļ·āđˆāļ­āļ™āļ—āļĩāđˆāļ‚āļ­āļ‡āļ•āļ°āļāļ­āļ™āļāļąāļšāđāļšāļšāļˆāļģāļĨāļ­āļ‡āļ‚āļ­āļ‡ Grass āđ‚āļ”āļĒāļāļēāļĢāļ›āļĢāļ°āļĄāļēāļ“āļ„āđˆāļēāđ€āļŠāļīāļ‡āļ•āļąāļ§āđ€āļĨāļ‚āđƒāļŠāđ‰āļ§āļīāļ˜āļĩāļĢāļ°āđ€āļšāļĩāļĒāļšāļ§āļīāļ˜āļĩāļ›āļĢāļīāļĄāļēāļ•āļĢāļŠāļ·āļšāđ€āļ™āļ·āđˆāļ­āļ‡ āļ āļēāļĒāđƒāļ•āđ‰āļ›āļĢāļīāļžāļąāļ™āļ˜āđŒ āđāļĨāļ°āđƒāļŠāđ‰āļ§āļīāļ˜āļĩāļāļđāļ”āļđāļ™āļđāļŸ āđ€āļ›āđ‡āļ™āļžāļ·āđ‰āļ™āļāļēāļ™āđƒāļ™āļāļēāļĢāđāļāđ‰āļ›āļąāļāļŦāļēāļāļēāļĢāļ›āļĢāļ°āļĄāļēāļ“āļ„āđˆāļēāļĢāļĩāļĄāļąāļ™āļ™āđŒāđ‚āļ”āļĒāļŸāļąāļ‡āļāđŒāļŠāļąāļ™āļāļđāļ”āļđāļ™āļđāļŸ āļ›āļĢāļ°āļĄāļēāļ“āļ„āđˆāļēāđ‚āļ”āļĒāđƒāļŠāđ‰āļ§āļīāļ˜āļĩāļāļēāļĢ Harten Lax VanLee (HLL) āđ€āļžāļ·āđˆāļ­āļ›āļĢāļ°āļĄāļēāļ“āļŦāļēāļ„āđˆāļēāļŸāļĨāļąāļāļ‹āđŒ āđāļšāļšāļˆāļģāļĨāļ­āļ‡āļ™āļĩāđ‰āđ„āļ”āđ‰āļžāļąāļ’āļ™āļēāļ‚āļķāđ‰āļ™āđ€āļ›āđ‡āļ™āļ‹āļ­āļŸāļ•āđŒāđāļ§āļĢāđŒāļŠāļ·āđˆāļ­ VirtualSed3D āļžāļšāļ§āđˆāļēāļāļēāļĢāđ€āļ„āļĨāļ·āđˆāļ­āļ™āļ—āļĩāđˆāļ‚āļ­āļ‡āļ•āļ°āļāļ­āļ™āļˆāļ°āļŠāđ‰āļēāļŦāļĢāļ·āļ­āđ€āļĢāđ‡āļ§āļ‚āļķāđ‰āļ™āļ­āļĒāļđāđˆāļāļąāļšāļ„āđˆāļēāļ„āļ§āļēāļĄāļžāļĢāļļāļ™āļ‚āļ­āļ‡āļ•āļ°āļāļ­āļ™ āļ„āļ§āļēāļĄāļ•āđˆāļ­āđ€āļ™āļ·āđˆāļ­āļ‡āļ‚āļ­āļ‡āļ„āļĨāļ·āđˆāļ™ āđāļĨāļ°āļ„āļ§āļēāļĄāļĨāļķāļāļ‚āļ­āļ‡āļžāļ·āđ‰āļ™āļ—āļĩāđˆāļ—āļĩāđˆāļĻāļķāļāļĐāļē āļœāļĨāļ‡āļēāļ™āļˆāļēāļāļ‡āļēāļ™āļ§āļīāļˆāļąāļĒāļ™āļĩāđ‰āļŠāļēāļĄāļēāļĢāļ–āļ™āļģāđ„āļ›āļ›āļĢāļ°āļĒāļļāļāļ•āđŒāđƒāļŠāđ‰āļāļąāļšāļžāļ·āđ‰āļ™āļ—āļĩāđˆāļ­āļ·āđˆāļ™ āđ† āđƒāļ™āļĨāļąāļāļĐāļ“āļ°āļĢāļđāļ›āđāļšāļšāđ€āļ”āļĩāļĒāļ§āļāļąāļ™āđ„āļ”

    āđāļšāļšāļˆāļģāļĨāļ­āļ‡āļ—āļēāļ‡āļŠāļ–āļīāļ•āļīāļŠāļģāļŦāļĢāļąāļšāļāļēāļĢāđ€āļ›āļĨāļĩāđˆāļĒāļ™āđāļ›āļĨāļ‡āļĢāļ°āļ”āļąāļšāļ™āđ‰āļģāļ—āļ°āđ€āļĨāđƒāļ™āļ›āļĢāļ°āđ€āļ—āļĻāđ„āļ—āļĒ

    No full text
    Doctor of Philosophy (Research Methodology), 2022Increasing sea levels can change the shape of coastlines, contribute to coastal erosion, and lead to flooding and increased underground salt-water intrusion. The water levels of coastal areas are important because the effects of sea level change can be devastating to vulnerable coastal and marine areas and can impact the function and structure of their ecosystems. This study aimed to investigate variations and longterm changes in the frequency of distribution of water levels along the Gulf of Thailand and the Andaman Sea, and to examine the secular trends in tidal levels, tidal ranges, mean sea level (MSL) and four main tidal constituents. The water level data were obtained from the Marine Department and include 14 stations, namely LaemNgop, ThaChalaep, Rayong, BangPakong, SamutSakhon, SamutSongkram, BanLaem, LangSuan, Sichon, PakPanang, Narathiwat, Krabi, Kantang and Tammalang. The data span for each station, as well as the length of available water level records, was different. This research was divided into two studies. In the first study, six stations were included in the analysis, namely LaemNgop, ThaChalaep, Rayong, Krabi, Kantang and Tammalang, which had tidal characteristics, diurnal and semi-diurnal tides along the coast of Thailand. The distinct water levels for these six stations spaned 14 years. The secular trends in tidal levels were analysed using periodic and linear regression. The results showed that all water levels at ThaChalaep, Kantrang and Krabi stations had increasing trends, contrasting to water levels in LaemNgop and Rayong stations, which had decreasing trends. In the second study, hourly data from 14 tidal gauge stations included three types of tides, namely diurnal, semi-diurnal and mixed-diurnal tides along the coast of Thailand over different periods were analysed. The variations, long-term changes in the frequency of distribution of water levels, secular trends in tidal level, tidal range and MSL, as well as the four main tidal constituents (lunisolar declination diurnal tide (K1), principal lunar declination diurnal tide (O1), principal lunar semidiurnal tide (M2) and principal solar diurnal tide (S2)), were analysed using percentile, harmonic and linear regression methods. The result from percentile analysis revealed that the height of water levels in the upper Gulf of Thailand was higher and varied more than in the lower Gulf of Thailand. In contrast, the Andaman Sea had a more stable water level than in the Gulf of Thailand. Most water levels in the upper Gulf of Thailand showed significant long-term changes, which occurred due to MSL rise and long-term trends in the tidal component and non-tidal residuals. The findings from the harmonic analysis confirmed the change in tidal components and secular trends in all tidal levels. These trends were caused by changes in the four main tidal constituents (M2, S2, O1, and K1), with the exception of Sichon, Tammalang, and Kabi stations, which showed no significant trend in both amplitude and phase. The overall finding indicated that water level change along the coast of Thailand occurred due to MSL, astronomical tides and non-tide residual. The changes were more prominent in the upper Gulf of Thailand compared to the lower Gulf and the Andaman Sea.1. Centre of Excellence in Mathematics (CEM), Commission on Higher Education, Thailand. 2. Faculty of Science and Technology, Pattani campus, Pattani, Thailand.āļĢāļ°āļ”āļąāļšāļ™āđ‰āļģāļ—āļ°āđ€āļĨāļ—āļĩāđˆāđ€āļžāļīāđˆāļĄāļ‚āļķāđ‰āļ™āļŠāļēāļĄāļēāļĢāļ–āđ€āļ›āļĨāļĩāđˆāļĒāļ™āļĢāļđāļ›āļĢāđˆāļēāļ‡āļ‚āļ­āļ‡āđāļ™āļ§āļŠāļēāļĒāļāļąāđˆāļ‡ āļ™āļģāđ„āļ›āļŠāļđāđˆāļāļēāļĢāļāļąāļ”āđ€āļ‹āļēāļ°āļŠāļēāļĒāļāļąāđˆāļ‡ āļ™āđ‰āļģāļ—āđˆāļ§āļĄ āđāļĨāļ°āļāļēāļĢāļšāļļāļāļĢāļļāļāļ‚āļ­āļ‡āļ™āđ‰āļģāđ€āļ„āđ‡āļĄāđƒāļ•āđ‰āļ”āļīāļ™āļĄāļēāļāļ‚āļķāđ‰āļ™ āļĢāļ°āļ”āļąāļšāļ™āđ‰āļģāđƒāļ™āļžāļ·āđ‰āļ™āļ—āļĩāđˆāļŠāļēāļĒāļāļąāđˆāļ‡āļ—āļ°āđ€āļĨāļĄāļĩāļ„āļ§āļēāļĄāļŠāļģāļ„āļąāļāđ€āļ™āļ·āđˆāļ­āļ‡āļˆāļēāļāļœāļĨāļāļĢāļ°āļ—āļšāļ‚āļ­āļ‡āļāļēāļĢāđ€āļ›āļĨāļĩāđˆāļĒāļ™āđāļ›āļĨāļ‡āļ‚āļ­āļ‡āļĢāļ°āļ”āļąāļšāļ™āđ‰āļģāļ—āļ°āđ€āļĨāļŠāļēāļĄāļēāļĢāļ–āļ—āļģāļĨāļēāļĒāļžāļ·āđ‰āļ™āļ—āļĩāđˆāļŠāļēāļĒāļāļąāđˆāļ‡āļ—āļ°āđ€āļĨ āđāļĨāļ°āļŠāļēāļĒāļāļąāđˆāļ‡āļ—āļ°āđ€āļĨāļ—āļĩāđˆāđ€āļ›āļĢāļēāļ°āļšāļēāļ‡ āļĢāļ§āļĄāđ„āļ›āļ–āļķāļ‡āļāļēāļĢāļ—āļģāļĨāļēāļĒāđ‚āļ„āļĢāļ‡āļŠāļĢāđ‰āļēāļ‡āļ‚āļ­āļ‡āļĢāļ°āļšāļšāļ™āļīāđ€āļ§āļĻ āļāļēāļĢāļĻāļķāļāļĐāļēāļ™āļĩāđ‰āļĄāļĩāļ§āļąāļ•āļ–āļļāļ›āļĢāļ°āļŠāļ‡āļ„āđŒ āđ€āļžāļ·āđˆāļ­āļĻāļķāļāļĐāļēāļ„āļ§āļēāļĄāļœāļąāļ™āđāļ›āļĢ āđāļĨāļ°āļāļēāļĢāđ€āļ›āļĨāļĩāđˆāļĒāļ™āđāļ›āļĨāļ‡āđƒāļ™āļĢāļ°āļĒāļ°āļĒāļēāļ§āļ‚āļ­āļ‡āļĢāļ°āļ”āļąāļšāļ™āđ‰āļģāļ—āļ°āđ€āļĨāļ•āļēāļĄāđāļ™āļ§āļŠāļēāļĒāļāļąāđˆāļ‡āļ­āđˆāļēāļ§āđ„āļ—āļĒāđāļĨāļ°āļ­āļąāļ™āļ”āļēāļĄāļąāļ™ āđāļĨāļ°āđ€āļžāļ·āđˆāļ­āļ•āļĢāļ§āļˆāļŠāļ­āļšāđāļ™āļ§āđ‚āļ™āđ‰āļĄāļ‚āļ­āļ‡āļĢāļ°āļ”āļąāļšāļ™āđ‰āļģāļ‚āļķāđ‰āļ™āļ™āđ‰āļģāļĨāļ‡ āļŠāđˆāļ§āļ‡āļ‚āļ­āļ‡āļ™āđ‰āļģāļ‚āļķāđ‰āļ™āļ™āđ‰āļģāļĨāļ‡ āđāļĨāļ°āļĢāļ°āļ”āļąāļšāļ™āđ‰āļģāļ—āļ°āđ€āļĨāļ›āļēāļ™āļāļĨāļēāļ‡ āļ•āļĨāļ­āļ”āļˆāļ™āļ­āļ‡āļ„āđŒāļ›āļĢāļ°āļāļ­āļšāļŦāļĨāļąāļāļŠāļĩāđˆāļ›āļĢāļ°āļāļēāļĢāļ‚āļ­āļ‡āļ™āđ‰āļģāļ‚āļķāđ‰āļ™āļ™āđ‰āļģāļĨāļ‡ (lunisolar declination diurnal tide (K1), principal lunar declination diurnal tide (O1), principal lunar semi-diurnal tide (M2) and principal solar diurnal tide (S2)) āđ‚āļ”āļĒāđƒāļŠāđ‰āļ‚āđ‰āļ­āļĄāļđāļĨāļĢāļēāļĒāļŠāļąāđˆāļ§āđ‚āļĄāļ‡āļˆāļēāļāļāļĢāļĄāđ€āļˆāđ‰āļēāļ—āđˆāļēāļˆāļģāļ™āļ§āļ™ 14 āļŠāļ–āļēāļ™āļĩ āđ„āļ”āđ‰āđāļāđˆ āļŠāļ–āļēāļ™āļĩāđāļŦāļĨāļĄāļ‡āļ­āļš āļ—āđˆāļēāđāļ‰āļĨāļš āļĢāļ°āļĒāļ­āļ‡ āļšāļēāļ‡āļ›āļ°āļāļ‡ āļŠāļĄāļļāļ—āļĢāļŠāļēāļ„āļĢ āļŠāļĄāļļāļ—āļĢāļŠāļ‡āļ„āļĢāļēāļĄ āļšāđ‰āļēāļ™āđāļŦāļĨāļĄ āļŦāļĨāļąāļ‡āļŠāļ§āļ™ āļŠāļīāļŠāļĨ āļ›āļēāļāļžāļ™āļąāļ‡ āļ™āļĢāļēāļ˜āļīāļ§āļēāļŠ āļāļĢāļ°āļšāļĩāđˆ āļāļąāļ™āļ•āļąāļ‡ āđāļĨāļ°āļ•āļģāļĄāļ°āļĨāļąāļ‡ āļ‹āļķāđˆāļ‡āļ‚āđ‰āļ­āļĄāļđāļĨāđāļ•āđˆāļĨāļ°āļŠāļ–āļēāļ™āļĩāļĄāļĩāļāļēāļĢāđ€āļĢāļīāđˆāļĄāđ€āļāđ‡āļšāļ‚āđ‰āļ­āļĄāļđāļĨāļ•āđˆāļēāļ‡āļŠāđˆāļ§āļ‡āđ€āļ§āļĨāļēāļāļąāļ™ āđ‚āļ”āļĒāđāļšāđˆāļ‡āđ€āļ›āđ‡āļ™āļŠāļ­āļ‡āļāļēāļĢāļĻāļķāļāļĐāļē āļāļēāļĢāļĻāļķāļāļĐāļēāđāļĢāļ āļĻāļķāļāļĐāļēāļŦāļāļŠāļ–āļēāļ™āļĩāđ„āļ”āđ‰āđāļāđˆ āļŠāļ–āļēāļ™āļĩāđāļŦāļĨāļĄāļ‡āļ­āļš āļ—āđˆāļēāđāļ‰āļĨāļš āļĢāļ°āļĒāļ­āļ‡ āļāļĢāļ°āļšāļĩāđˆ āļāļąāļ™āļ•āļąāļ‡ āđāļĨāļ°āļ•āļģāļĄāļ°āļĨāļąāļ‡ āļ‹āļķāđˆāļ‡āļĄāļĩāļĨāļąāļāļĐāļ“āļ°āļ™āđ‰āļģāļ‚āļķāđ‰āļ™āļ™āđ‰āļģāļĨāļ‡āļŦāļ™āļķāđˆāļ‡āļ„āļĢāļąāđ‰āļ‡āļ•āđˆāļ­āļ§āļąāļ™ āđāļĨāļ°āļ™āđ‰āļģāļ‚āļķāđ‰āļ™āļĨāļ‡āđāļšāļšāļŠāļ­āļ‡āļ„āļĢāļąāđ‰āļ‡āļ•āđˆāļ­āļ§āļąāļ™āļ•āļēāļĄāđāļ™āļ§āļŠāļēāļĒāļāļąāđˆāļ‡āļ‚āļ­āļ‡āļ›āļĢāļ°āđ€āļ—āļĻāđ„āļ—āļĒ āļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāđāļ™āļ§āđ‚āļ™āđ‰āļĄāļ‚āļ­āļ‡āļĢāļ°āļ”āļąāļšāļ™āđ‰āļģāļ‚āļķāđ‰āļ™āļ™āđ‰āļģāļĨāļ‡āđƒāļ™āļŠāđˆāļ§āļ‡āđ€āļ§āļĨāļē 14 āļ›āļĩ āļ”āđ‰āļ§āļĒāļāļēāļĢāļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāļāļēāļĢāļ–āļ”āļ–āļ­āļĒāđāļšāļšāļ„āļēāļš āđāļĨāļ°āļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāļ–āļ”āļ–āļ­āļĒāđ€āļŠāļīāļ‡āđ€āļŠāđ‰āļ™ āļœāļĨāļāļēāļĢāļĻāļķāļāļĐāļēāļžāļšāļ§āđˆāļēāļĢāļ°āļ”āļąāļšāļ™āđ‰āļģāļ—āļ°āđ€āļĨāļ—āļĩāđˆāļŠāļ–āļēāļ™āļĩāļ—āđˆāļēāđāļ‰āļĨāļš āļāļąāļ™āļ•āļąāļ‡ āđāļĨāļ°āļāļĢāļ°āļšāļĩāđˆāļĢāļ°āļ”āļąāļšāļ™āđ‰āļģāļĄāļĩāđāļ™āļ§āđ‚āļ™āđ‰āļĄāļŠāļđāļ‡āļ‚āļķāđ‰āļ™ āļ‹āļķāđˆāļ‡āļ•āļĢāļ‡āļāļąāļ™āļ‚āđ‰āļēāļĄāļāļąāļšāļĢāļ°āļ”āļąāļšāļ™āđ‰āļģāļ—āļ°āđ€āļĨāđƒāļ™āļŠāļ–āļēāļ™āļĩāđāļŦāļĨāļĄāļ‡āļ­āļš āđāļĨāļ°āļĢāļ°āļĒāļ­āļ‡ āļ—āļĩāđˆāļĄāļĩāđāļ™āļ§āđ‚āļ™āđ‰āļĄāļĨāļ”āļĨāļ‡ āļāļēāļĢāļĻāļķāļāļĐāļēāļ—āļĩāđˆāļŠāļ­āļ‡ āđƒāļŠāđ‰āļ‚āđ‰āļ­āļĄāļđāļĨāļĢāļēāļĒāļŠāļąāđˆāļ§āđ‚āļĄāļ‡āļˆāļēāļāļŠāļ–āļēāļ™āļĩāļ§āļąāļ”āļ™āđ‰āļģāļ‚āļķāđ‰āļ™āļ™āđ‰āļģāļĨāļ‡āļˆāļēāļ 14 āļŠāļ–āļēāļ™āļĩ āļ‹āļķāđˆāļ‡āļĄāļĩāļ™āđ‰āļģāļ‚āļķāđ‰āļ™āļ™āđ‰āļģāļĨāļ‡ 3 āļ›āļĢāļ°āđ€āļ āļ— āļ™āđ‰āļģāļ‚āļķāđ‰āļ™āļ™āđ‰āļģāļĨāļ‡āļŦāļ™āļķāđˆāļ‡āļ„āļĢāļąāđ‰āļ‡āļ•āđˆāļ­āļ§āļąāļ™ āļ™āđ‰āļģāļ‚āļķāđ‰āļ™āļĨāļ‡āđāļšāļšāļŠāļ­āļ‡āļ„āļĢāļąāđ‰āļ‡āļ•āđˆāļ­āļ§āļąāļ™ āđāļĨāļ°āļ™āđ‰āļģāļ‚āļķāđ‰āļ™āļ™āđ‰āļģāļĨāļ‡āđāļšāļšāļœāļŠāļĄ āļ•āļēāļĄāđāļ™āļ§āļŠāļēāļĒāļāļąāđˆāļ‡āļ‚āļ­āļ‡āļ›āļĢāļ°āđ€āļ—āļĻāđ„āļ—āļĒāđƒāļ™āļŠāđˆāļ§āļ‡āđ€āļ§āļĨāļēāļ•āđˆāļēāļ‡ āđ† āļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāļāļēāļĢāđ€āļ›āļĨāļĩāđˆāļĒāļ™āđāļ›āļĨāļ‡āļĢāļ°āļ”āļąāļšāļ™āđ‰āļģāđƒāļ™āļĢāļ°āļĒāļ°āļĒāļēāļ§ āđāļĨāļ°āđāļ™āļ§āđ‚āļ™āđ‰āļĄāļ‚āļ­āļ‡āļĢāļ°āļ”āļąāļšāļ™āđ‰āļģāļ‚āļķāđ‰āļ™āļ™āđ‰āļģāļĨāļ‡ āļŠāđˆāļ§āļ‡āļ„āļ§āļēāļĄāđāļ•āļāļ•āđˆāļēāļ‡āļ‚āļ­āļ‡āļ™āđ‰āļģāļ‚āļķāđ‰āļ™āļ™āđ‰āļģāļĨāļ‡ āļĢāļ°āļ”āļąāļšāļ™āđ‰āļģāļ—āļ°āđ€āļĨāļ›āļēāļ™āļāļĨāļēāļ‡ āđāļĨāļ°āļ­āļ‡āļ„āđŒāļ›āļĢāļ°āļāļ­āļšāļŦāļĨāļąāļāļŠāļĩāđˆāļ›āļĢāļ°āļāļēāļĢ (K1, O1, M2 āđāļĨāļ° S2) āļ‚āļ­āļ‡āļ™āđ‰āļģāļ‚āļķāđ‰āļ™āļ™āđ‰āļģāļĨāļ‡ āļ”āđ‰āļ§āļĒāļāļēāļĢāļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāđ€āļ›āļ­āļĢāđŒāđ€āļ‹āđ‡āļ™āđ„āļ—āļĨāđŒ āļāļēāļĢāļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāļ–āļ”āļ–āļ­āļĒāđ€āļŠāļīāļ‡āđ€āļŠāđ‰āļ™ āđāļĨāļ°āļāļēāļĢāļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāļŪāļēāļĢāđŒāļĄāļ­āļ™āļīāļ āļœāļĨāļˆāļēāļāļāļēāļĢāļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāđ€āļ›āļ­āļĢāđŒāđ€āļ‹āđ‡āļ™āđ„āļ—āļĨāđŒ āļžāļšāļ§āđˆāļēāļ„āļ§āļēāļĄāļŠāļđāļ‡āļ‚āļ­āļ‡āļĢāļ°āļ”āļąāļšāļ™āđ‰āļģāļ—āļ°āđ€āļĨāđƒāļ™āļ­āđˆāļēāļ§āđ„āļ—āļĒāļ•āļ­āļ™āļšāļ™āļŠāļđāļ‡āđāļĨāļ°āđāļ›āļĢāļœāļąāļ™āļĄāļēāļāļāļ§āđˆāļēāđƒāļ™āļ­āđˆāļēāļ§āđ„āļ—āļĒāļ•āļ­āļ™āļĨāđˆāļēāļ‡ āđƒāļ™āļ—āļēāļ‡āļ•āļĢāļ‡āļāļąāļ™āļ‚āđ‰āļēāļĄāļ—āļ°āđ€āļĨāļ­āļąāļ™āļ”āļēāļĄāļąāļ™āļĄāļĩāļĢāļ°āļ”āļąāļšāļ™āđ‰āļģāļ—āļ°āđ€āļĨāļ„āļ‡āļ—āļĩāđˆāļĄāļēāļāļāļ§āđˆāļēāđƒāļ™āļ­āđˆāļēāļ§āđ„āļ—āļĒ āļĢāļ°āļ”āļąāļšāļ™āđ‰āļģāļ—āļ°āđ€āļĨāđƒāļ™āļ­āđˆāļēāļ§āđ„āļ—āļĒāļ•āļ­āļ™āļšāļ™āļŠāđˆāļ§āļ™āđƒāļŦāļāđˆāđāļŠāļ”āļ‡āđƒāļŦāđ‰āđ€āļŦāđ‡āļ™āļāļēāļĢāđ€āļ›āļĨāļĩāđˆāļĒāļ™āđāļ›āļĨāļ‡āļ‚āļ­āļ‡āđāļ™āļ§āđ‚āļ™āđ‰āļĄāđƒāļ™āļĢāļ°āļĒāļ°āļĒāļēāļ§āļ­āļĒāđˆāļēāļ‡āļĄāļĩāļ™āļąāļĒāļŠāļģāļ„āļąāļ āļ‹āļķāđˆāļ‡āđ€āļāļīāļ”āļ‚āļķāđ‰āļ™āļˆāļēāļāļāļēāļĢāđ€āļžāļīāđˆāļĄāļ‚āļķāđ‰āļ™āļ‚āļ­āļ‡āļĢāļ°āļ”āļąāļšāļ™āđ‰āļģāļ—āļ°āđ€āļĨāļ›āļēāļ™āļāļĨāļēāļ‡ āđāļ™āļ§āđ‚āļ™āđ‰āļĄāđƒāļ™āļĢāļ°āļĒāļ°āļĒāļēāļ§āļ‚āļ­āļ‡āļ™āđ‰āļģāļ‚āļķāđ‰āļ™āļ™āđ‰āļģāļĨāļ‡ āđāļĨāļ°āļ›āļąāļˆāļˆāļąāļĒāļ āļēāļĒāļ™āļ­āļāļ—āļĩāđˆāđ„āļĄāđˆāđƒāļŠāđˆāļ™āđ‰āļģāļ‚āļķāđ‰āļ™āļ™āđ‰āļģāļĨāļ‡ āļœāļĨāļˆāļēāļāļāļēāļĢāļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāļŪāļēāļĢāđŒāđ‚āļĄāļ™āļīāļāļĒāļ·āļ™āļĒāļąāļ™āļāļēāļĢāđ€āļ›āļĨāļĩāđˆāļĒāļ™āđāļ›āļĨāļ‡āđƒāļ™āļ­āļ‡āļ„āđŒāļ›āļĢāļ°āļāļ­āļšāļ‚āļ­āļ‡āļ™āđ‰āļģāļ—āļ°āđ€āļĨ āđāļĨāļ°āđāļ™āļ§āđ‚āļ™āđ‰āļĄāļ‚āļ­āļ‡āđ‚āļĨāļāđƒāļ™āļ—āļļāļāļĢāļ°āļ”āļąāļšāļ™āđ‰āļģāļ‚āļķāđ‰āļ™āļ™āđ‰āļģāļĨāļ‡ āđāļ™āļ§āđ‚āļ™āđ‰āļĄāđ€āļŦāļĨāđˆāļēāļ™āļĩāđ‰āđ€āļāļīāļ”āļˆāļēāļāļāļēāļĢāđ€āļ›āļĨāļĩāđˆāļĒāļ™āđāļ›āļĨāļ‡āļ‚āļ­āļ‡āļ­āļ‡āļ„āđŒāļ›āļĢāļ°āļāļ­āļšāļ™āđ‰āļģāļ‚āļķāđ‰āļ™āļ™āđ‰āļģāļĨāļ‡āļŦāļĨāļąāļāļ—āļąāđ‰āļ‡āļŠāļĩāđˆ (M2, S2, O1 āđāļĨāļ° K1) āļĒāļāđ€āļ§āđ‰āļ™āļŠāļ–āļēāļ™āļĩāļŠāļīāļŠāļĨ āļ•āļģāļĄāļ°āļĨāļąāļ‡ āđāļĨāļ°āļāļĢāļ°āļšāļĩāđˆ āļ‹āļķāđˆāļ‡āđ„āļĄāđˆāļĄāļĩāđāļ™āļ§āđ‚āļ™āđ‰āļĄāļ—āļĩāđˆāļĄāļĩāļ™āļąāļĒāļŠāļģāļ„āļąāļāļ—āļąāđ‰āļ‡āđƒāļ™āđāļ­āļĄāļžāļĨāļīāļˆāļđāļ” āđāļĨāļ°āđ€āļŸāļŠ āļœāļĨāļāļēāļĢāļ§āļīāļˆāļąāļĒāđ‚āļ”āļĒāļĢāļ§āļĄāļšāđˆāļ‡āļŠāļĩāđ‰āļ§āđˆāļēāļĢāļ°āļ”āļąāļšāļ™āđ‰āļģāļ—āļĩāđˆāđ€āļ›āļĨāļĩāđˆāļĒāļ™āđāļ›āļĨāļ‡āļ•āļēāļĄāđāļ™āļ§āļŠāļēāļĒāļāļąāđˆāļ‡āļ‚āļ­āļ‡āļ›āļĢāļ°āđ€āļ—āļĻāđ„āļ—āļĒāđ€āļāļīāļ”āļ‚āļķāđ‰āļ™āļˆāļēāļāļĢāļ°āļ”āļąāļšāļ™āđ‰āļģāļ—āļ°āđ€āļĨāļ›āļēāļ™āļāļĨāļēāļ‡ āļāļĢāļ°āđāļŠāļ™āđ‰āļģāļ—āļēāļ‡āļ”āļēāļĢāļēāļĻāļēāļŠāļ•āļĢāđŒ āđāļĨāļ°āļ›āļąāļˆāļˆāļąāļĒāļ āļēāļĒāļ™āļ­āļ āļāļēāļĢāđ€āļ›āļĨāļĩāđˆāļĒāļ™āđāļ›āļĨāļ‡āļĄāļĩāļ„āļ§āļēāļĄāļŠāļąāļ”āđ€āļˆāļ™āđƒāļ™āļ­āđˆāļēāļ§āđ„āļ—āļĒāļ•āļ­āļ™āļšāļ™āđ€āļĄāļ·āđˆāļ­āđ€āļ—āļĩāļĒāļšāļāļąāļšāļ­āđˆāļēāļ§āđ„āļ—āļĒāļ•āļ­āļ™āļĨāđˆāļēāļ‡āđāļĨāļ°āļ—āļ°āđ€āļĨāļ­āļąāļ™āļ”āļēāļĄāļą

    Latent Trajectories of Haematological, Hepatic, and Renal Profiles after Oil Spill Exposure: A Longitudinal Analysis

    No full text
    Exposure to polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs) in crude oil has carcinogenic effects on various organ systems. This longitudinal cohort study examined the effects of oil spill exposure on the haematological, hepatic, and renal profiles of Rayong oil spill clean-up workers. The sample included 869 clean-up workers from the Rayong oil spill. Latent class mixture models were used to investigate and classify the longitudinal trajectories and trends of the haematological, hepatic, and renal indices. Subgroup analysis was used to evaluate the association between the urinary metabolites of PAHs and VOCs and haematological, hepatic, and renal parameters. Most clean-up workers (97.6%) had increasing levels of white blood cells (WBCs) (0.03 × 103 cells/µL), 94.90% of the workers had a significantly increasing trend of blood urea nitrogen (0.31 mg/dL per year), and 87.20% had a significantly increasing trend of serum creatinine (0.01 mg/dL per year). A high–decreasing trend of WBCs was seen in 2.42% (−0.73 × 103 per year). Post-exposure changes in haematological, renal, and hepatic profiles are present in workers exposed to the Rayong oil spill. This indicates possible long-term health complications and worsening renal function after exposure to PAHs and VOCs in crude oil

    Latent Trajectories of Haematological, Hepatic, and Renal Profiles after Oil Spill Exposure: A Longitudinal Analysis

    No full text
    Exposure to polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs) in crude oil has carcinogenic effects on various organ systems. This longitudinal cohort study examined the effects of oil spill exposure on the haematological, hepatic, and renal profiles of Rayong oil spill clean-up workers. The sample included 869 clean-up workers from the Rayong oil spill. Latent class mixture models were used to investigate and classify the longitudinal trajectories and trends of the haematological, hepatic, and renal indices. Subgroup analysis was used to evaluate the association between the urinary metabolites of PAHs and VOCs and haematological, hepatic, and renal parameters. Most clean-up workers (97.6%) had increasing levels of white blood cells (WBCs) (0.03 × 103 cells/ÂĩL), 94.90% of the workers had a significantly increasing trend of blood urea nitrogen (0.31 mg/dL per year), and 87.20% had a significantly increasing trend of serum creatinine (0.01 mg/dL per year). A high–decreasing trend of WBCs was seen in 2.42% (−0.73 × 103 per year). Post-exposure changes in haematological, renal, and hepatic profiles are present in workers exposed to the Rayong oil spill. This indicates possible long-term health complications and worsening renal function after exposure to PAHs and VOCs in crude oil
    corecore