338 research outputs found
Sports Nutrition: What the Future may Bring
The field of sports nutrition is a dynamic one. Core competencies in exercise physiology, psychology, integrated metabolism and biochemistry are the initial parameters for a successful career in sports nutrition. In addition to the academic fundamentals, it is imperative that the sports nutritionist understand the sport in which our client participates. This sport specific understanding should manifest itself in fuel utilization, mechanics of movement, as well as psychological processes that motivate the participant to perform optimally. Sports nutrition as a field has grown substantially over the past 50 years, from glycogen loading to today's scientifically validated ergogenic aids. The last ten years has seen the largest advancement of sports nutrition, with the following areas driving much of the research: the effects of exercise on protein utilization, meal timing to maximize the anabolic response, the potential for ribose to benefit those engaged in high-energy repetitive sports, and creatine and its uses within athletics and medicine. The future of sports nutrition will dictate that we 1) collectively strive for a higher standard of care and education for counseling athletes and 2) integrate different disciplines. We are in an era of unprecedented growth and the new knowledge is constantly evolving. The International Society of Sports Nutrition (ISSN) will contribute to this exciting field in many ways, and we ask for your contribution by sharing your passion, stories, research, and life experiences with us
Why do Asian-American women have lower rates of breast conserving surgery: results of a survey regarding physician perceptions
<p>Abstract</p> <p>Background</p> <p>US Asian women with early-stage breast cancer are more likely to receive a modified radical mastectomy (MRM) than White women, contrary to clinical recommendations regarding breast conserving treatment (BCT).</p> <p>Methods</p> <p>We surveyed physicians regarding treatment decision-making for early-stage breast cancer, particularly as it applies to Asian patients. Physicians were identified through the population-based Greater Bay Area Cancer Registry. Eighty (of 147) physicians completed a questionnaire on sociodemographics, professional training, clinical practices, and perspectives on the treatment decision-making processes.</p> <p>Results</p> <p>The most important factors identified by physicians in the BCT/MRM decision were clinical in nature, including presence of multifocal disease (86% identified this as being an important factor for selecting MRM), tumor size (71% for MRM, 78% for BCT), cosmetic result (74% for BCT), and breast size (50% for MRM, 55% for BCT). The most important reasons cited for the Asian treatment patterns were patient attitudes toward not needing to preserve the breast (53%), smaller breast sizes (25%), and fear and cultural beliefs (12%).</p> <p>Conclusion</p> <p>These survey results suggest that physicians perceive major roles of both clinical and cultural factors in the BCT/MRM decision, but cultural factors may be more relevant in explaining surgical treatment patterns among Asians.</p
Effects of beta-hydroxy-beta-methylbutyrate (HMB) on exercise performance and body composition across varying levels of age, sex, and training experience: A review
The leucine metabolite beta-hydroxy-beta-methylbutyrate (HMB) has been extensively used as an ergogenic aid; particularly among bodybuilders and strength/power athletes, who use it to promote exercise performance and skeletal muscle hypertrophy. While numerous studies have supported the efficacy of HMB in exercise and clinical conditions, there have been a number of conflicting results. Therefore, the first purpose of this paper will be to provide an in depth and objective analysis of HMB research. Special care is taken to present critical details of each study in an attempt to both examine the effectiveness of HMB as well as explain possible reasons for conflicting results seen in the literature. Within this analysis, moderator variables such as age, training experience, various states of muscle catabolism, and optimal dosages of HMB are discussed. The validity of dependent measurements, clustering of data, and a conflict of interest bias will also be analyzed. A second purpose of this paper is to provide a comprehensive discussion on possible mechanisms, which HMB may operate through. Currently, the most readily discussed mechanism has been attributed to HMB as a precursor to the rate limiting enzyme to cholesterol synthesis HMG-coenzyme A reductase. However, an increase in research has been directed towards possible proteolytic pathways HMB may operate through. Evidence from cachectic cancer studies suggests that HMB may inhibit the ubiquitin-proteasome proteolytic pathway responsible for the specific degradation of intracellular proteins. HMB may also directly stimulate protein synthesis, through an mTOR dependent mechanism. Finally, special care has been taken to provide future research implications
Celecoxib exerts protective effects in the vascular endothelium via COX-2-independent activation of AMPK-CREB-Nrf2 signalling
Although concern remains about the athero-thrombotic risk posed by cyclo-oxygenase (COX)-2-selective inhibitors, recent data implicates rofecoxib, while celecoxib appears equivalent to NSAIDs naproxen and ibuprofen. We investigated the hypothesis that celecoxib activates AMP kinase (AMPK) signalling to enhance vascular endothelial protection. In human arterial and venous endothelial cells (EC), and in contrast to ibuprofen and naproxen, celecoxib induced the protective protein heme oxygenase-1 (HO-1). Celecoxib derivative 2,5-dimethyl-celecoxib (DMC) which lacks COX-2 inhibition also upregulated HO-1, implicating a COX-2-independent mechanism. Celecoxib activated AMPKα(Thr172) and CREB-1(Ser133) phosphorylation leading to Nrf2 nuclear translocation. Importantly, these responses were not reproduced by ibuprofen or naproxen, while AMPKα silencing abrogated celecoxib-mediated CREB and Nrf2 activation. Moreover, celecoxib induced H-ferritin via the same pathway, and increased HO-1 and H-ferritin in the aortic endothelium of mice fed celecoxib (1000 ppm) or control chow. Functionally, celecoxib inhibited TNF-α-induced NF-κB p65(Ser536) phosphorylation by activating AMPK. This attenuated VCAM-1 upregulation via induction of HO-1, a response reproduced by DMC but not ibuprofen or naproxen. Similarly, celecoxib prevented IL-1β-mediated induction of IL-6. Celecoxib enhances vascular protection via AMPK-CREB-Nrf2 signalling, a mechanism which may mitigate cardiovascular risk in patients prescribed celecoxib. Understanding NSAID heterogeneity and COX-2-independent signalling will ultimately lead to safer anti-inflammatory drugs
Comparative effectiveness of dipeptidyl peptidase-4 (DPP-4) inhibitors and human glucagon-like peptide-1 (GLP-1) analogue as add-on therapies to sulphonylurea among diabetes patients in the Asia-Pacific region: a systematic review
The prevalence of diabetes mellitus is rising globally, and it induces a substantial public health burden to the healthcare systems. Its optimal control is one of the most significant challenges faced by physicians and policy-makers. Whereas some of the established oral hypoglycaemic drug classes like biguanide, sulphonylureas, thiazolidinediones have been extensively used, the newer agents like dipeptidyl peptidase-4 (DPP-4) inhibitors and the human glucagon-like peptide-1 (GLP-1) analogues have recently emerged as suitable options due to their similar efficacy and favorable side effect profiles. These agents are widely recognized alternatives to the traditional oral hypoglycaemic agents or insulin, especially in conditions where they are contraindicated or unacceptable to patients. Many studies which evaluated their clinical effects, either alone or as add-on agents, were conducted in Western countries. There exist few reviews on their effectiveness in the Asia-Pacific region. The purpose of this systematic review is to address the comparative effectiveness of these new classes of medications as add-on therapies to sulphonylurea drugs among diabetic patients in the Asia-Pacific countries. We conducted a thorough literature search of the MEDLINE and EMBASE from the inception of these databases to August 2013, supplemented by an additional manual search using reference lists from research studies, meta-analyses and review articles as retrieved by the electronic databases. A total of nine randomized controlled trials were identified and described in this article. It was found that DPP-4 inhibitors and GLP-1 analogues were in general effective as add-on therapies to existing sulphonylurea therapies, achieving HbA1c reductions by a magnitude of 0.59–0.90% and 0.77–1.62%, respectively. Few adverse events including hypoglycaemic attacks were reported. Therefore, these two new drug classes represent novel therapies with great potential to be major therapeutic options. Future larger-scale research should be conducted among other Asia-Pacific region to evaluate their efficacy in other ethnic groups
Erythroid Promoter Confines FGF2 Expression to the Marrow after Hematopoietic Stem Cell Gene Therapy and Leads to Enhanced Endosteal Bone Formation
Fibroblast growth factor-2 (FGF2) has been demonstrated to be a promising osteogenic factor for treating osteoporosis. Our earlier study shows that transplantation of mouse Sca-1+ hematopoietic stem/progenitor cells that are engineered to express a modified FGF2 leads to considerable endosteal/trabecular bone formation, but it also induces adverse effects like hypocalemia and osteomalacia. Here we report that the use of an erythroid specific promoter, β-globin, leads to a 5-fold decrease in the ratio of serum FGF2 to the FGF2 expression in the marrow cavity when compared to the use of a ubiquitous promoter spleen focus-forming virus (SFFV). The confined FGF2 expression promotes considerable trabeculae bone formation in endosteum and does not yield anemia and osteomalacia. The avoidance of anemia in the mice that received Sca1+ cells transduced with FGF2 driven by the β-globin promoter is likely due to attenuation of high-level serum FGF2-mediated stem cell mobilization observed in the SFFV-FGF2 animals. The prevention of osteomalacia is associated with substantially reduced serum Fgf23/hypophosphatemia, and less pronounced secondary hyperparathyroidism. Our improved stem cell gene therapy strategy represents one step closer to FGF2-based clinical therapy for systemic skeletal augmentation
Tensor Decomposition Reveals Concurrent Evolutionary Convergences and Divergences and Correlations with Structural Motifs in Ribosomal RNA
Evolutionary relationships among organisms are commonly described by using a
hierarchy derived from comparisons of ribosomal RNA (rRNA) sequences. We propose that
even on the level of a single rRNA molecule, an organism's evolution is composed
of multiple pathways due to concurrent forces that act independently upon different
rRNA degrees of freedom. Relationships among organisms are then compositions of
coexisting pathway-dependent similarities and dissimilarities, which cannot be
described by a single hierarchy. We computationally test this hypothesis in
comparative analyses of 16S and 23S rRNA sequence alignments by using a tensor
decomposition, i.e., a framework for modeling composite data. Each alignment is
encoded in a cuboid, i.e., a third-order tensor, where nucleotides, positions and
organisms, each represent a degree of freedom. A tensor mode-1 higher-order singular
value decomposition (HOSVD) is formulated such that it separates each cuboid into
combinations of patterns of nucleotide frequency variation across organisms and
positions, i.e., “eigenpositions” and corresponding nucleotide-specific
segments of “eigenorganisms,” respectively, independent of a-priori
knowledge of the taxonomic groups or rRNA structures. We find, in support of our
hypothesis that, first, the significant eigenpositions reveal multiple similarities
and dissimilarities among the taxonomic groups. Second, the corresponding
eigenorganisms identify insertions or deletions of nucleotides exclusively conserved
within the corresponding groups, that map out entire substructures and are enriched
in adenosines, unpaired in the rRNA secondary structure, that participate in tertiary
structure interactions. This demonstrates that structural motifs involved in rRNA
folding and function are evolutionary degrees of freedom. Third, two previously
unknown coexisting subgenic relationships between Microsporidia and Archaea are
revealed in both the 16S and 23S rRNA alignments, a convergence and a divergence,
conferred by insertions and deletions of these motifs, which cannot be described by a
single hierarchy. This shows that mode-1 HOSVD modeling of rRNA alignments might be
used to computationally predict evolutionary mechanisms
Dopamine Regulates Angiogenesis in Normal Dermal Wound Tissues
Cutaneous wound healing is a normal physiological process and comprises different phases. Among these phases, angiogenesis or new blood vessel formation in wound tissue plays an important role. Skin is richly supplied by sympathetic nerves and evidences indicate the significant role of the sympathetic nervous system in cutaneous wound healing. Dopamine (DA) is an important catecholamine neurotransmitter released by the sympathetic nerve endings and recent studies have demonstrated the potent anti-angiogenic action of DA, which is mediated through its D2 DA receptors. We therefore postulate that this endogenous catecholamine neurotransmitter may have a role in the neovascularization of dermal wound tissues and subsequently in the process of wound healing. In the present study, the therapeutic efficacy of D2 DA receptor antagonist has been investigated for faster wound healing in a murine model of full thickness dermal wound. Our results indicate that treatment with specific D2 DA receptor antagonist significantly expedites the process of full thickness normal dermal wound healing in mice by inducing angiogenesis in wound tissues. The underlined mechanisms have been attributed to the up-regulation of homeobox transcription factor HoxD3 and its target α5β1 integrin, which play a pivotal role in wound angiogenesis. Since D2 DA receptor antagonists are already in clinical use for other disorders, these results have significant translational value from the bench to the bedside for efficient wound management along with other conventional treatment modalities
- …