13 research outputs found

    Synergistic use of fermentation and extrusion processing to design plant protein-based sausages

    Get PDF
    The synergistic effect of lactic acid fermentation and high-moisture extrusion processing of pea protein on the microbiological and sensory properties of plant-based sausages was investigated. Plant-based sausages were formed by combining fermented pea protein concentrate (PPC) biomass with high-moisture extruded pea protein isolate (PPI). Pea protein concentrate (PPC) was fermented with Lactococcus lactis subsp. lactis and Lactiplantibacillus plantarum to improve the perceived structure, texture, and flavour (specifically via expression of glutamic acid which is connected to umami flavour) of plant-based sausages.The sausages were prepared by stuffing the mixture of extruded PPI and fermented PPC (addition level 70:30) inside vegetarian casings followed by steam cooking. After preparation and cooking of the sausages, a trained sensory panel evaluated the intensities of ten selected attributes defining the flavour, odour, colour, and texture. In addition, dry matter content, acidification, microbial quality, and glutamate contents were analysed.The results demonstrated that fermentation decreased the pea-like odour and improved the texture of the sausages. In addition, yeast-like odour and umami taste were observed. The study was able to demonstrate novel clean-label processing approaches by combined fermentation and extrusion to generate in-situ meat-like flavour and texture based on plant protein ingredients

    Comparison of Whole and Gutted Baltic Herring as a Raw Material for Restructured Fish Product Produced by High-Moisture Extrusion Cooking

    Get PDF
    Interest in using undervalued forage fish for human consumption has recently increased due to its environmental benefits. However, feasible strategies to process the undervalued fish species to food use are limited. Therefore, this study investigated the possibility to utilise whole (ungutted) Baltic herring as a raw material for hybrid plant-fish meat analogues produced by high-moisture extrusion cooking. The sample properties were compared with ungutted Baltic herring. Produced meat analogues showed sufficiently high microbial quality, with spoilage microbes showing growth levels of under 1.4 log CFU/g. Whole fish and gutted fish extrudates showed uniform flavour- and odour-related sensory profiles. Colour values of the whole fish (L* 57.8) extrudates were similar to the values of gutted fish extrudates (L* 62.0). The whole and gutted fish extrudates had tensile strength in a cross-cut direction of 25.5 and 46.3 kPa, respectively. This correlated with the tearing force of the extrudates analysed by a trained sensory panel. Furthermore, a more explicit protein network was microscopically observed in gutted fish than in whole fish extrudates. The present study showed that high-moisture extrusion cooking enables the use of whole small-sized fish for human consumption

    Comparison of enzymatic and pH shift methods to extract protein from whole Baltic herring (Clupea harengus membras) and roach (Rutilus rutilus)

    Get PDF
    This study aimed to establish the differences between enzymatically extracted hydrolysates and pH shifted protein isolates from whole Baltic herring and roach in terms of polypeptide patterns, functionality, sensory properties, microbial quality, yield, and composition. Alkaline extraction resulted in the highest yields, whereas the hydrolysates showed the highest protein contents. The hydrolysates showed higher protein solubility (86.0–88.5%) than the protein isolates (5.1–14.5%) as well as the higher foam capacity for Baltic herring. However, for roach, alkaline extracted protein isolates exhibited the highest foam capacity. All hydrolysates showed poor foam stability (0–13%) while the protein isolates showed notably higher stability (30–55%). The hydrolysates showed relatively low bitterness, whereas alkaline extracted roach proteins were perceived as bitter. This study demonstrated that it was possible to produce protein isolates and hydrolysates from whole fish with good microbial quality. However, both processes need to be optimised according to the food application and fish species.</p

    Quality of Protein Isolates and Hydrolysates from Baltic Herring (Clupea harengus membras) and Roach (Rutilus rutilus) Produced by pH-Shift Processes and Enzymatic Hydrolysis

    Get PDF
    Fractionation is a potential way to valorize under-utilized fishes, but the quality of the resulting fractions is crucial in terms of their applicability. The aim of this work was to study the quality of protein isolates and hydrolysates extracted from roach (Rutilus rutilus) and Baltic herring (Clupea harengus membras) using either pH shift or enzymatic hydrolysis. The amino acid composition of protein isolates and hydrolysates mostly complied with the nutritional requirements for adults, but protein isolates produced using pH shift showed higher essential to non-essential amino acid ratios compared with enzymatically produced hydrolysates, 0.84-0.85 vs. 0.65-0.70, respectively. Enzymatically produced protein hydrolysates had a lower total lipid content, lower proportion of phospholipids, and exhibited lower degrees of protein and lipid oxidation compared with pH-shift-produced isolates. These findings suggest enzymatic hydrolysis to be more promising from a lipid oxidation perspective while the pH-shift method ranked higher from a nutrient perspective. However, due to the different applications of protein isolates and hydrolysates produced using pH shift or enzymatic hydrolysis, respectively, the further optimization of both studied methods is recommended

    Korkean solutiheyden kasvatukset

    No full text

    Limited hydrolysis of rice endosperm protein for improved techno-functional properties

    No full text
    Limited hydrolysis of rice endosperm protein isolate was carried out with acid and neutral endoproteases to evaluate the relationship between degree of hydrolysis and techno-functional properties. The highest studied degree of hydrolysis was 5.4% corresponding to 55.2% protein solubility. Solubility increased as a function of degree of hydrolysis with higher efficiency by acid endoprotease. Colloidal stability of the protein suspensions steadily increased with increasing degree of hydrolysis. Higher colloidal stability values were achieved by neutral endoprotease (31–89%) compared to that by acid endoprotease (20–75%). On the other hand, the absolute values of zeta potential and surface hydrophobicity decreased as a function of degree of hydrolysis leading to higher values by neutral endoprotease (−21.4 mV and 21.7 mV) than by acid endoprotease (−813.4 mV and 11.7 mV). Foaming, gel formation and water holding properties improved only until degree of hydrolysis values of 1.5% (neural endoprotease) and 1.9% (acid endoprotease).</p
    corecore