2 research outputs found

    Building The Sugarcane Genome For Biotechnology And Identifying Evolutionary Trends

    Get PDF
    Background: Sugarcane is the source of sugar in all tropical and subtropical countries and is becoming increasingly important for bio-based fuels. However, its large (10 Gb), polyploid, complex genome has hindered genome based breeding efforts. Here we release the largest and most diverse set of sugarcane genome sequences to date, as part of an on-going initiative to provide a sugarcane genomic information resource, with the ultimate goal of producing a gold standard genome.Results: Three hundred and seventeen chiefly euchromatic BACs were sequenced. A reference set of one thousand four hundred manually-annotated protein-coding genes was generated. A small RNA collection and a RNA-seq library were used to explore expression patterns and the sRNA landscape. In the sucrose and starch metabolism pathway, 16 non-redundant enzyme-encoding genes were identified. One of the sucrose pathway genes, sucrose-6-phosphate phosphohydrolase, is duplicated in sugarcane and sorghum, but not in rice and maize. A diversity analysis of the s6pp duplication region revealed haplotype-structured sequence composition. Examination of hom(e)ologous loci indicate both sequence structural and sRNA landscape variation. A synteny analysis shows that the sugarcane genome has expanded relative to the sorghum genome, largely due to the presence of transposable elements and uncharacterized intergenic and intronic sequences.Conclusion: This release of sugarcane genomic sequences will advance our understanding of sugarcane genetics and contribute to the development of molecular tools for breeding purposes and gene discovery. © 2014 de Setta et al.; licensee BioMed Central Ltd.151European Commission: Agriculture and Rural Development: Sugar http://ec.europa.eu/agriculture/sugar/index_en.htmKellogg, E.A., Evolutionary history of the grasses (2001) Plant Physiol, 125, pp. 1198-1205Grivet, L., Arruda, P., Sugarcane genomics: depicting the complex genome of an important tropical crop (2001) Curr Opin Plant Biol, 5, pp. 122-127Piperidis, G., Piperidis, N., D'Hont, A., Molecular cytogenetic investigation of chromosome composition and transmission in sugarcane (2010) Mol Genet Genomics, 284, pp. 65-73D'Hont, A., Unraveling the genome structure of polyploids using FISH and GISHexamples of sugarcane and banana (2005) Cytogenet Genome Res, 109, pp. 27-33D'Hont, A., Glaszmann, J.C., Sugarcane genome analysis with molecular markers: a first decade of research (2001) Int Soc Sugar Cane Technol Proc XXIV Congr, pp. 556-559Tomkins, J., Yu, Y., Miller-Smith, H., Frisch, D., Woo, S., Wing, R., A bacterial artificial chromosome library for sugarcane (1999) Theor Appl Genet, 99, pp. 419-424Vettore, L., Silva, F.R., Kemper, E.L., Souza, G.M., Silva, A.M., Ferro, M., Henrique-Silva, F., Monteiro-Vitorello, C.B., Analysis and functional annotation of an expressed sequence tag collection for tropical crop sugarcane (2003) Genome Res, 13, pp. 2725-2735Repbase http://www.girinst.org/repbase/Domingues, D.S., Cruz, G.M.Q., Metcalfe, C.J., Nogueira, F.T.S., Vicentini, R., Alves, C.S., Van Sluys, M.-A., Analysis of plant LTR-retrotransposons at the fine-scale family level reveals individual molecular patterns (2012) BMC Genomics, 13, p. 137National Center for Biotechnology Information (NCBI) http://www.ncbi.nlm.nih.gov/Meyer, F., Paarmann, D., D'Souza, M., Olson, R., Glass, E.M., Kubal, M., Paczian, T., Edwards, R.A., The metagenomics RAST server - a public resource for the automatic phylogenetic and functional analysis of metagenomes (2008) BMC Bioinformatics, 9, p. 386Keeling, P.L., Myers, A.M., Biochemistry and genetics of starch synthesis (2010) Annu Rev Food Sci Technol, 1, pp. 271-303Phytozome v9.1: Home http://www.phytozome.net/Dias, E.S., Carareto, C.M.A., Ancestral polymorphism and recent invasion of transposable elements in Drosophila species (2012) BMC Evol Biol, 12, p. 119Posada, D., Crandall, K., Intraspecific gene genealogies: trees grafting into networks (2001) Trends Ecol Evol, 16, pp. 37-45Swaminathan, K., Alabady, M.S., Varala, K., De Paoli, E., Ho, I., Rokhsar, D.S., Arumuganathan, A.K., Hudson, M.E., Genomic and small RNA sequencing of Miscanthus x giganteus shows the utility of sorghum as a reference genome sequence for Andropogoneae grasses (2010) Genome Biol, 11, pp. R12Zanca, A.S., Vicentini, R., Ortiz-Morea, F.A., Del Bem, L.E., da Silva, M.J., Vincentz, M., Nogueira, F.T., Identification and expression analysis of microRNAs and targets in the biofuel crop sugarcane (2010) BMC Plant Biol, 10, p. 260Piriyapongsa, J., Jordan, I.K., A family of human microRNA genes from miniature inverted-repeat transposable elements (2007) PLoS ONE, 2, pp. e203Barrera-Figueroa, B.E., Gao, L., Wu, Z., Zhou, X., Zhu, J., Jin, H., Liu, R., Zhu, J.-K., High throughput sequencing reveals novel and abiotic stress-regulated microRNAs in the inflorescences of rice (2012) BMC Plant Biol, 12, p. 132Nagaki, K., Tsujimoto, H., Sasakuma, T., A novel repetitive sequence of sugar cane, SCEN family, locating on centromeric regions (1998) Chromosom Res, 6, pp. 295-302Nagaki, K., Neumann, P., Zhang, D., Ouyang, S., Buell, C.R., Cheng, Z., Jiang, J., Structure, divergence, and distribution of the CRR centromeric retrotransposon family in rice (2005) Mol Biol Evol, 22, pp. 845-855Vicentini, R., Del Bem, L.E., Van Sluys, M.-A., Nogueira, F., Vincentz, M., Gene content analysis of sugarcane public ESTs reveals thousands of missing coding-genes and an unexpected pool of grasses conserved ncRNAs (2012) Trop Plant Biol, 5, pp. 199-205Kim, C., Lee, T.-H., Compton, R.O., Robertson, J.S., Pierce, G.J., Paterson, A.H., A genome-wide BAC end-sequence survey of sugarcane elucidates genome composition, and identifies BACs covering much of the euchromatin (2013) Plant Mol Biol, 81, pp. 139-147Paterson, A.H., Bowers, J.E., Bruggmann, R., Dubchak, I., Grimwood, J., Gundlach, H., Haberer, G., Carpita, N.C., The Sorghum bicolor genome and the diversification of grasses (2009) Nature, 457, pp. 551-556Chang, Y., Gong, L., Yuan, W., Li, X., Chen, G., Li, X., Zhang, Q., Wu, C., Replication protein A (RPA1a) is required for meiotic and somatic DNA repair but is dispensable for DNA replication and homologous recombination in rice (2009) Plant Physiol, 151, pp. 2162-2173Feschotte, C., Transposable elements and the evolution of regulatory networks (2008) Nat Rev Genet, 9, pp. 397-405Wang, J., Roe, B., Macmil, S., Yu, Q., Murray, J.E., Tang, H., Chen, C., Ming, R., Microcollinearity between autopolyploid sugarcane and diploid sorghum genomes (2010) BMC Genomics, 11, p. 261Garsmeur, O., Charron, C., Bocs, S., Jouffe, V., Samain, S., Couloux, A., Droc, G., D'Hont, A., High homologous gene conservation despite extreme autopolyploid redundancy in sugarcane (2011) New Phytol, 189, pp. 629-642Jannoo, N., Grivet, L., Chantret, N., Garsmeur, O., Glaszmann, J.C., Arruda, P., D'Hont, A., Orthologous comparison in a gene-rich region among grasses reveals stability in the sugarcane polyploid genome (2007) Plant J, 50, pp. 574-585Figueira, T.R.E.S., Okura, V., da Silva, F.R., da Silva, M.J., Kudrna, D., Ammiraju, J.S.S., Talag, J., Arruda, P., A BAC library of the SP80-3280 sugarcane variety (saccharum sp.) and its inferred microsynteny with the sorghum genome (2012) BMC Res Notes, 5, p. 185Schnable, P.S., Ware, D., Fulton, R.S., Stein, J.C., Wei, F., Pasternak, S., Liang, C., Gillam, B., The B73 maize genome: complexity, diversity, and dynamics (2009) Science, 326, pp. 1112-1115Tenaillon, M.I., Hufford, M.B., Gaut, B.S., Ross-Ibarra, J., Genome size and transposable element content as determined by high-throughput sequencing in maize and Zea luxurians (2011) Genome Biol Evol, 3, pp. 219-229Zhang, J., Yu, C., Krishnaswamy, L., Peterson, T., Transposable Elements as Catalysts for Chromosome Rearrangements (2011) Methods Mol Biol, pp. 315-326. , Totowa, NJ: Humana Press, Birchler JAMa, J., Wing, R.A., Bennetzen, J.L., Jackson, S.A., Plant centromere organization: a dynamic structure with conserved functions (2007) Trends Genet, 23, pp. 134-139D'Hont, A., Grivet, L., Feldmann, P., Rao, S., Berding, N., Glaszmann, J.C., Characterisation of the double genome structure of modern sugarcane cultivars (Saccharum spp.) by molecular cytogenetics (1996) Mol Gen Genet, 250, pp. 405-413Bao, Y., Wendel, J.F., Ge, S., Multiple patterns of rDNA evolution following polyploidy in Oryza (2010) Mol Phylogenet Evol, 55, pp. 136-142Lynch, M., (2007) The Origins of Genome Architecture, , Sunderland, Massachussetts, USA: Sinauer Associates IncThe map-based sequence of the rice genome (2005) Nature, 436, pp. 793-800. , International Rice Genome Sequencing ProjectLiu, B., Xu, C., Zhao, N., Qi, B., Kimatu, J.N., Pang, J., Han, F., Rapid genomic changes in polyploid wheat and related species: implications for genome evolution and genetic improvement (2009) J Genet Genomics, 36, pp. 519-528Lisch, D., How important are transposons for plant evolution? (2012) Nat Rev Genet, 14, pp. 49-61Udall, J.A., Wendel, J.F., Polyploidy and crop improvement (2006) Crop Sci, 46, pp. S3-S14Varshney, R.K., Graner, A., Sorrells, M.E., Genomics-assisted breeding for crop improvement (2005) Trends Plant Sci, 10, pp. 621-630Menossi, M., Silva-Filho, M.C., Vincentz, M., Van-Sluys, M.-A., Souza, G.M., Sugarcane functional genomics: gene discovery for agronomic trait development (2008) Int J Plant Genomics, 2008, p. 458732. , doi:10.1155/2008/458732Palhares, A.C., Rodrigues-Morais, T.B., Van Sluys, M.-A., Domingues, D.S., Maccheroni, W., Jordão, H., Souza, A.P., Vieira, M.L.C., A novel linkage map of sugarcane with evidence for clustering of retrotransposon-based markers (2012) BMC Genet, 13, p. 51Andersen, J.R., Lübberstedt, T., Functional markers in plants (2003) Trends Plant Sci, 8, pp. 554-560Kalendar, R., Flavell, A.J., Ellis, T.H.N., Sjakste, T., Moisy, C., Schulman, A., Analysis of plant diversity with retrotransposon-based molecular markers (2011) Heredity (Edinb), 106, pp. 520-530PGML BACMan On The Web: Grasses http://www.plantgenome.uga.edu/bacman/BACManwww.phpRice Genome Annotation Project http://rice.plantbiology.msu.edu/Bowers, J.E., Arias, M.A., Asher, R., Avise, J.A., Ball, R.T., Brewer, G.A., Buss, R.W., Soderlund, C.A., Comparative physical mapping links conservation of microsynteny to chromosome structure and recombination in grasses (2005) Proc Natl Acad Sci U S A, 102, pp. 13206-13211Adam-Blondon, A.-F., Bernole, A., Faes, G., Lamoureux, D., Pateyron, S., Grando, M.S., Caboche, M., Chalhoub, B., Construction and characterization of BAC libraries from major grapevine cultivars (2005) Theor Appl Genet, 110, pp. 1363-1371Manetti, M.E., Rossi, M., Cruz, G.M.Q., Saccaro, N.L., Nakabashi, M., Altebarmakian, V., Rodier-Goud, M., Van Sluys, M.A., Mutator system derivatives isolated from sugarcane genome sequence (2012) Trop Plant Biol, 5, pp. 233-243Phrap http://www.phrap.org/RepeatMasker http://www.repeatmasker.org/Jurka, J., Kapitonov, V.V., Pavlicek, A., Klonowski, P., Kohany, O., Repbase update, a database of eukaryotic repetitive elements (2005) Cytogenet Genome Res, 110, pp. 462-467Han, Y., Wessler, S.R., MITE-Hunter: a program for discovering miniature inverted-repeat transposable elements from genomic sequences (2010) Nucleic Acids Res, 38 (22), pp. e199. , doi: 10.1093/nar/gkq862. Epub 2010 Sep 29Frickey, T., Lupas, A., CLANS: a Java application for visualizing protein families based on pairwise similarity (2004) Bioinformatics, 20, pp. 3702-3704Han, Y., Qin, S., Wessler, S.R., Comparison of class 2 transposable elements at superfamily resolution reveals conserved and distinct features in cereal grass genomes (2013) BMC Genomics, 14, p. 71Keller, O., Kollmar, M., Stanke, M., Waack, S., A novel hybrid gene prediction method employing protein multiple sequence alignments (2011) Bioinformatics, 27, pp. 757-763Majoros, W.H., Pertea, M., Salzberg, S.L., TigrScan and GlimmerHMM: two open source ab initio eukaryotic gene-finders (2004) Bioinformatics, 20, pp. 2878-2879Haas, B.J., Delcher, A.L., Mount, S.M., Wortman, J.R., Smith, R.K., Hannick, L.I., Maiti, R., White, O., Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies (2003) Nucleic Acids Res, 31, pp. 5654-5666Haas, B.J., Salzberg, S.L., Zhu, W., Pertea, M., Allen, J.E., Orvis, J., White, O., Wortman, J.R., Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to assemble spliced alignments (2008) Genome Biol, 9, pp. R7Petersen, T.N., Brunak, S., von Heijne, G., Nielsen, H., SignalP 4.0: discriminating signal peptides from transmembrane regions (2011) Nat Methods, 8, pp. 785-786TMHMM Server v. 2.0 http://www.cbs.dtu.dk/services/TMHMM-2.0/Rutherford, K., Parkhill, J., Crook, J., Horsnell, T., Rice, P., Rajandream, M.A., Barrell, B., Artemis: sequence visualization and annotation (2000) Bioinformatics, 16, pp. 944-945UniProt http://www.uniprot.org/InterPro: Protein sequence analysis and classification http://www.ebi.ac.uk/interpro/Conesa, A., Götz, S., Blast2GO: a comprehensive suite for functional analysis in plant genomics (2008) Int J Plant Genomics, 2008, pp. 1-12SUCEST-FUN Project http://sucest-fun.org/MG-RAST: metagenomics analysis server http://metagenomics.anl.gov/KAAS - KEGG automatic annotation server http://www.genome.jp/kegg/kaas/Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., Kumar, S., MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods (2011) Mol Biol Evol, 28, pp. 2731-2739Lyons, E., Freeling, M., How to usefully compare homologous plant genes and chromosomes as DNA sequences (2008) Plant J, 53, pp. 661-673Hall, T.A., BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT (1999) Nucleic Acids Symp Ser, 41, pp. 95-98Geneious - Homepage http://www.geneious.com/Heslop-Harrison, P., Schwarzacher, T., (2000) Practical In Situ Hybridization, , Oxford, UK: BIOS Scientific Publishers LtdAljanabi, S., Forget, L., Dookun, A., An improved and rapid protocol for the isolation of polysaccharide-and polyphenol-free sugarcane DNA (1999) Plant Mol Biol Report, 17, pp. 1-8Maq: Mapping and assembly with qualities http://maq.sourceforge.net/SeqMonk http://www.bioinformatics.babraham.ac.uk/projects/seqmonk/Gasic, K., Hernandez, A., Korban, S.S., RNA extraction from different apple tissues rich in polyphenols and polysaccharides for cDNA (2004) Plant Mol Biol Report, 22 (DECEMBER), pp. 437a-437gLi, H., Durbin, R., Fast and accurate short read alignment with Burrows-Wheeler transform (2009) Bioinformatics, 25, pp. 1754-1760Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Durbin, R., The sequence Alignment/Map format and SAMtools (2009) Bioinformatics, 25, pp. 2078-2079Thompson, J.D., Higgins, D.G., Gibson, T.J., CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice (1994) Nucleic Acids Res, 22, pp. 4673-4680Bandelt, H.J., Forster, P., Röhl, A., Median-joining networks for inferring intraspecific phylogenies (1999) Mol Biol Evol, 16, pp. 37-48Paterson, A.H., Freeling, M., Tang, H., Wang, X., Insights from the comparison of plant genome sequences (2010) Annu Rev Plant Biol, 61, pp. 349-37

    Elevated Co2 Increases Photosynthesis, Biomass And Productivity, And Modifies Gene Expression In Sugarcane

    No full text
    Because of the economical relevance of sugarcane and its high potential as a source of biofuel, it is important to understand how this crop will respond to the foreseen increase in atmospheric [CO2]. The effects of increased [CO2] on photosynthesis, development and carbohydrate metabolism were studied in sugarcane (Saccharum ssp.). Plants were grown at ambient (∼370 ppm) and elevated (∼720 ppm) [CO2] during 50 weeks in open-top chambers. The plants grown under elevated CO2 showed, at the end of such period, an increase of about 30% in photosynthesis and 17% in height, and accumulated 40% more biomass in comparison with the plants grown at ambient [CO2]. These plants also had lower stomatal conductance and transpiration rates (-37 and -32%, respectively), and higher water-use efficiency (c.a. 62%). cDNA microarray analyses revealed a differential expression of 35 genes on the leaves (14 repressed and 22 induced) by elevated CO2. The latter are mainly related to photosynthesis and development. Industrial productivity analysis showed an increase of about 29% in sucrose content. These data suggest that sugarcane crops increase productivity in higher [CO2], and that this might be related, as previously observed for maize and sorghum, to transient drought stress. © 2008 The Authors.31811161127Aidar, M.P.M., Martinez, C.A., Costa, A.C., Costa, P.M.F., Dietrich, S.M.C., Buckeridge, M.S., Effect of atmospheric CO2 enrichment on the establishment of seedlings of jatobá. Hymenaea courbaril L. (Leguminosae, Caesalpinioideae) (2002) Biota Neotropica, 2. , http://www.biotaneotropica.org.br/v2n1/en/abstract?article+BN01602012002Ainsworth, E.A., Long, S.P., What have we learned from 15 years of free air-CO2 enrichment (FACE)? a meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2 (2005) New Phytologist, 165, pp. 351-372Ainsworth, E.A., Rogers, A., The response of photosynthesis and stomatal conductance to rising [cO2]: Mechanisms and environmental interactions (2007) Plant, Cell & Environment, 30, pp. 258-270Ainsworth, E.A., Rogers, A., Vodkin, L.O., Walter, A., Schurr, U., The effects of elevated CO2 concentration on soybean gene expression. An analysis of growing and mature leaves (2006) Plant Physiology, 142, pp. 135-147Arp, W.J., Effects of source-sink relations on photosynthetic acclimation to elevated CO2 (1991) Plant, Cell & Environment, 14, pp. 869-875Blaschke, L., Legrand, M., Mai, C., Polle, A., Lignification and structural biomass production in tobacco with suppressed caffeic/5-hydroxy ferulic acid-O-methyl transferase activity under ambient and elevated CO2 concentrations (2004) Physiologia Plantarum, 121, pp. 75-83Bowes, G., Facing the inevitable: Plants and increasing atmospheric CO2 (1993) Annual Review of Plant Physiology and Plant Molecular Biology, 44, pp. 309-332Carpita, N.C., Fractionation of hemicelluloses from maize cell walls with increasing concentrations of alkali (1984) Phytochemistry, 23, pp. 1089-1093Cousins, A.B., Bloom, A.J., Influence of elevated CO2 and nitrogen nutrition on photosynthesis and nitrate photo-assimilation in maize (Zea mays L.) (2003) Plant, Cell & Environment, 26, pp. 1526-1530Cousins, A.B., Adam, N.R., Wall, G.W., Al, E., Reduced photorespiration and increased energy-use efficiency in young CO2-enriched sorghum leaves (2001) New Phytologist, 150, pp. 275-284Cousins, A.B., Adam, N.R., Wall, G.W., Kimball, B.A., Pinter Jr., P.J., Ottman, M.J., Leavitt, S.W., Weber, A.N., Development of C4 photosynthesis in sorghum leaves grown under free-air CO2 enrichment (FACE) (2003) Journal of Experimental Botany, 54, pp. 1969-1975Doorembos, J., Kassam, A.H., (1979) Efectos del Agua Sobre El Rendimiento de Los Cultivos., p. 212. , FAO, Rome, ppDruart, N., Rodríguez-Buey, M., Barron-Gafford, G., Sjödin, A., Bhalerao, R., Hurry, V., Molecular targets of elevated [cO2] in leaves and stem of Populus deltoides: Implications for future tree growth and carbon sequestration (2006) Functional Plant Biology, 33, pp. 121-131Ferris, R., Sabatti, M., Miglietta, F., Miels, R.F., Taylor, G., Leaf area is stimulated in Populus by free air CO2 enrichmen through cell expansion and production (2001) Plant, Cell & Environment, 24, pp. 305-315Foyer, H.C., The basis for source-sink interaction in leaves (1987) Plant Physiology and Biochemistry, 25, pp. 649-657Gascho, G.J., Shih, S.F., Sugarcane (1983) Crop Water Relations, p. 479. , In. eds. I.D. Teare. M.M. Peet. pp.-448. Wiley-Interscience, New YorkGhannoum, O., Von Caemmerer, S., Ziska, L.H., Conroy, J.P., The growth response of C4 plants to rising atmospheric CO 2 partial pressure: A reassessment (2000) Plant, Cell & Environment, 23, pp. 931-942Goldenberg, J., Ethanol for a sustainable energy future (2007) Science, 315, pp. 808-810Gorshokova, T.A., Wyatt, S.E., Salnikov, V.V., Gibeaut, D.M., Ibragimov, M.R., Lozovaya, V.V., Carpita, N.C., Cell-wall polysaccharides of developing flax plants (1996) Plant Physiology, 110, pp. 721-729Iskandar, H.M., Simpson, R.S., Casu, R.E., Bonnett, G.D., MacLean, D.J., Manners, J.M., Comparison of reference genes for quantitative real-time polymerase chain reaction analysis of gene expression in sugarcane (2004) Plant Molecular Biology Reporter, 22, pp. 325-337Kim, S.H., Sicher, R.C., Bae, H., Gitz, D.C., Bakers, J.T., Timlin, D.J., Reddy, V.R., Canopy photosynthesis, evapotranspiration, leaf nitrogen, and transcription profiles of maize in response to CO2 enrichment (2006) Global Change Biology, 12, pp. 588-600Koide, T., Salem-Izaac, S.M., Gomes, S.L., Vencio, R.Z.N., SpotWhatR: A user-friendly microarray data analysis system (2006) Genetic Molecular Research, 5, pp. 93-107Körner, C., Asshoff, R., Bignucolo, O., Hattenscwiler, S., Keel, S.G., Pelàez-Riedl, S., Pepin, S., Zotz, G., Carbon flux and growth in mature deciduous forest trees exposed to elevated CO2 (2005) Science, 309, pp. 1360-1362Leakey, A.D.B., Uribelarrea, M., Ainsworth, E.A., Naidu, S.L., Rogers, A., Ort, D.R., Long, S.P., Photosynthesis, productivity and yield of maize are not affected by open-air elevation of CO2 concentration in the absence of drought (2006) Plant Physiology, 140, pp. 779-790Li, J., Li, X., Su, H., Chen, H., Galbraith, D.W., A framework of integrating gene relations from heterogeneous data sources: An experiment on Arabidopsis thaliana (2006) Bioinformatics, 22, pp. 2037-2043Livak, K.J., Schmittgen, T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method (2001) Methods, 25, pp. 402-408Long, S.P., Ainsworth, E.A., Rogers, A., Ort, D.R., Rising atmospheric carbon dioxide: Plants FACE the future (2004) Annual Reviews of Plant Biology, 55, pp. 591-628Maroco, J.P., Edwards, G.E., Ku, M.S.B., Photosynthetic acclimation of maize to growth under elevated levels of carbon dioxide (1999) Planta, 210, pp. 115-125Miyazaki, S., Fredricksen, M., Hollis, K.C., Poroyko, V., Shepley, D., Galbraith, D.W., Long, S.P., Bohnert, H.J., Transcript expression profiles of Arabdopsis thaliana grown under controlled conditions and open-air elevated concentrations of CO2 and of O3 (2004) Field Crops Research, 90, pp. 47-59Moore, B.D., Cheng, S.H., Rice, J., Seemann, J.R., Sucrose cycling, Rubisco expression, and prediction of photosynthetic acclimation to elevated atmospheric CO2 (1998) Plant, Cell & Environment, 21, pp. 905-915Nowak, R.S., Ellsworth, D.S., Smith, S.D., Functional responses of plants to elevated atmospheric CO2- do photosynthetic and productivity data from FACE experiments support early predictions? (2004) New Phytologist, 162, pp. 253-280Ottman, M.J., Kimball, B.A., Pinter, P.J., Wall, G.W., Vanderlip, R.L., Leavitt, S.W., Lamorte, R.L., Brooks, T.J., Elevated CO2 increases sorghum biomass under drought conditions (2001) New Phytologist, 150, pp. 261-273Papini-Terzi, F.S., Rocha, F.R., Vêncio, R.Z.N., Al, E., Transcription profiling of signal transduction-related genes in sugarcane tissues (2005) DNA Research, 12, pp. 27-38Pearcy, R.W., Ehleringer, J., Comparative ecophysiology of C3 and C4 plants (1984) Plant, Cell & Environment, 7, pp. 1-13Pritchard, S.G., Rogers, H.H., Prior, S.A., Peterson, C.M., Elevated CO2 and plant structure: A review (1999) Global Change Biology, 5, pp. 807-837Understanding and attributing climate change (2007) Climate Change 2007: The Physical Science Basis Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change., , Solomon S., Qin D., Manning M., Chen Z., Marquis M., Averyt K.B., Tignor M. Miller H.L. (eds) Cambridge University Press, Cambridge and New YorkSouza, G.M., Simões, A.C.Q., Oliveira, K.C., Garay, H.M., Fiorini, L.C., Gomes, F.S., Nishiyama-Junior, M.Y., Silva, A.M., SUCAST: Prospecting signal transduction in sugarcane (2001) Genetics Molecular Biology, 24, pp. 25-34(2007), http://www.portalunica.com.br, Sugar Cane Industry - UNICA. Available at: (accessed 18 September 2007)Tang, J., Chen, J., Chen, X., Response of 12 weedy species to elevated CO2 in low-phosphorus-availability soil (2006) Ecological Research, 21, pp. 664-670Taylor, G., Tricker, P.J., Zhang, F.Z., Alston, V.J., Miglietta, F., Kuzminsky, E., Spatial and temporal effects of free-air CO2 enrichment (POPFACE) on leaf growth, cell expansion, and cell production in a closed canopy of poplar (2003) Plant Physiology, 131, pp. 177-185Taylor, G., Street, N.R., Tricker, P.J., Sjödin, A., Graham, L., Skogström, O., Calfapietra, C., Janson, S., Transcriptome of Populus in elevated CO2 (2005) New Phytologist, 167, pp. 143-154Vettore, A.L., Da Silva, F.R., Kemper, E.L., Souza, G.M., Arruda, P., Analysis and functional annotation of expressed sequence tag collection for tropical crop sugarcane (2003) Genome Research, 13, pp. 2725-2735Von Caemmerer, S., (2000) Biochemical Models of Leaf Photosynthesis., , CSIRO Publishing, CollingwoodVu, J.C.V., Allen Jr., L.H., Gesch, R.W., Up-regulation of photosynthesis and sucrose metabolism enzymes in young expanding leaves of sugarcane under elevated growth CO2 (2006) Plant Science, 171, pp. 123-131Wand, S.J.E., Midgley, G.F., Jones, M.H., Curtis, P.S., Responses of wild C4 and C3 grass (Poaceae) species to elevated atmospheric CO2 concentration: A meta-analytic test of current theories and perceptions (1999) Global Change Biology, 5, pp. 723-741Watling, J.R., Press, M.C., Quick, W.P., Elevated CO2 induces biochemical and ultrastructural changes in leaves of the C4 cereal sorghum (2000) Plant Physiology, 123, pp. 1143-1152Wu, Y., Cosgrove, D.J., Adaptation of roots to low water potentials by changes in cell wall extensibility and cell wall proteins (2000) Journal of Experimental Botany, 51, pp. 1543-1553Yang, Y.H., Dudoit, S., Luu, P., Lin, D.M., Peng, V., Ngai, J., Speed, T.P., Normalization for cDNA microarray data: A robust composite method addressing single and multiple slide systematic variation (2002) Nucleic Acids Research, 30, pp. e15Ziska, L.H., Bunce, J.A., Influence of increasing carbon dioxide concentration on the photosynthetic and growth stimulation of selected C4 crops and weeds (1997) Photosynthesis Research, 54, pp. 199-208Ziska, L.H., Sicher, R.C., Bunce, J.A., The impact of elevated carbon dioxide on the growth and gas exchange of three C4 species differing in CO2 leak rates (1999) Physiologia Plantarum, 105, pp. 74-8
    corecore