41 research outputs found

    Microflow photochemistry: UVC-induced [2 + 2]-photoadditions to furanone in a microcapillary reactor

    Get PDF
    [2 + 2]-Cycloadditions of cyclopentene and 2,3-dimethylbut-2-ene to furanone were investigated under continuous-flow conditions. Irradiations were conducted in a FEP-microcapillary module which was placed in a Rayonet chamber photoreactor equipped with low wattage UVC-lamps. Conversion rates and isolated yields were compared to analogue batch reactions in a quartz test tube. In all cases examined, the microcapillary reactor furnished faster conversions and improved product qualities

    Ethylene regulation of fruit softening and cell wall disassembly in Charentais melon

    Get PDF
    Cell wall disassembly in ripening fruit is highly complex, involving the dismantling of multiple polysaccharide networks by diverse families of wall-modifying proteins. While it has been reported in several species that multiple members of each such family are expressed in the same fruit tissue, it is not clear whether this reflects functional redundancy, with protein isozymes from a single enzyme class performing similar roles and contributing equally to wall degradation, or whether they have discrete functions, with some isoforms playing a predominant role. Experiments reported here sought to distinguish between cell wall-related processes in ripening melon that were softening-associated and softening-independent. Cell wall polysaccharide depolymerization and the expression of wall metabolism-related genes were examined in transgenic melon (Cucumis melo var. cantalupensis Naud.) fruit with suppressed expression of the 1-aminocyclopropane-1-carboxylate oxidase (ACO) gene and fruits treated with ethylene and 1-methylcyclopropene (1-MCP). Softening was completely inhibited in the transgenic fruit but was restored by treatment with exogenous ethylene. Moreover, post-harvest application of 1-MCP after the onset of ripening completely halted subsequent softening, suggesting that melon fruit softening is ethylene-dependent. Size exclusion chromatography of cell wall polysaccharides, from the transgenic fruits, with or without exogenous ethylene, indicated that the depolymerization of both pectins and xyloglucans was also ethylene dependent. However, northern analyses of a diverse range of cell wallrelated genes, including those for polygalacturonases, xyloglucan endotransglucosylase/hydrolases, expansin, and b-galactosidases, identified specific genes within single families that could be categorized as ethylene-dependent, ethylene-independent, or partially ethylene-dependent. These results support the hypothesis that while individual cell wall-modifying proteins from each family contribute to cell wall disassembly that accompanies fruit softening, other closely related family members are regulated in an ethylene-independent manner and apparently do not directly participate in fruit softening

    De Novo Mutations in GNAO1, Encoding a Gαo Subunit of Heterotrimeric G Proteins, Cause Epileptic Encephalopathy

    Get PDF
    Heterotrimeric G proteins, composed of α, β, and γ subunits, can transduce a variety of signals from seven-transmembrane-type receptors to intracellular effectors. By whole-exome sequencing and subsequent mutation screening, we identified de novo heterozygous mutations in GNAO1, which encodes a Gαo subunit of heterotrimeric G proteins, in four individuals with epileptic encephalopathy. Two of the affected individuals also showed involuntary movements. Somatic mosaicism (approximately 35% to 50% of cells, distributed across multiple cell types, harbored the mutation) was shown in one individual. By mapping the mutation onto three-dimensional models of the Gα subunit in three different complexed states, we found that the three mutants (c.521A>G [p.Asp174Gly], c.836T>A [p.Ile279Asn], and c.572_592del [p.Thr191_Phe197del]) are predicted to destabilize the Gα subunit fold. A fourth mutant (c.607G>A), in which the Gly203 residue located within the highly conserved switch II region is substituted to Arg, is predicted to impair GTP binding and/or activation of downstream effectors, although the p.Gly203Arg substitution might not interfere with Gα binding to G-protein-coupled receptors. Transient-expression experiments suggested that localization to the plasma membrane was variably impaired in the three putatively destabilized mutants. Electrophysiological analysis showed that Gαo-mediated inhibition of calcium currents by norepinephrine tended to be lower in three of the four Gαo mutants. These data suggest that aberrant Gαo signaling can cause multiple neurodevelopmental phenotypes, including epileptic encephalopathy and involuntary movements

    Association between shift work and the risk of death from biliary tract cancer in Japanese men

    Get PDF
    Background: There is increasing evidence suggesting that shift work involving night work may increase cancer risk. Methods: We examined the association between working rotating shifts and the risk of death from biliary tract cancer among Japanese men who participated in the Japan Collaborative Cohort Study. Of the 46, 395 men recruited, 22, 224 men aged 40-65 at baseline (1988-1990) who reported working full-time or were self-employed were included in the present analysis. The study subjects were followed through December 31, 2009. Information regarding occupation and lifestyle factors was collected using a self-administered questionnaire. Cox proportional hazard models were used to estimate the hazard ratio (HR) and 95 % confidence interval (CI) for the risk of death from biliary tract cancer in relation to shift work. Results: During a mean 17-year follow-up, we observed 94 biliary tract cancer deaths, including 23 deaths from gallbladder cancer and 71 deaths from extrahepatic bile duct cancer. Overall, shift work was associated with a statistically non-significant increase in the risk of biliary tract cancer, with an HR of 1.50 (95 % CI: 0.81-2.77), among rotating shift workers. When the analysis was limited to extrahepatic bile duct cancer, a significant association appeared, with a multivariable-adjusted HR of 1.93 (95 % CI: 1.00-3.72) for rotating shift workers. Conclusion: Our data indicate that shift work may be associated with increased risk of death from extrahepatic bile duct cancer in this cohort of Japanese men. The association with gallbladder cancer remains unclear because of the small number of deaths

    Acid-mediated synthesis of fully substituted 1,2,3-triazoles: multicomponent coupling reactions, mechanistic study, synthesis of serine hydrolase inhibitor and its derivatives

    Get PDF
    We describe the full details of multicomponent coupling reactions in acid-mediated synthesis of fully substituted 1,2,3-triazoles syntheses, and their applications to bioactive molecule synthesis. For substitution with wide range of nucleophiles, selection of acids or activating reagents was important, and various types of multicomponent coupling reactions were demonstrated, allowing functionalization with alcohols, amines, thiol, azide, and carbon nucleophiles. Four-component couplings including double triazolations were also tested. The efficiency of this method was demonstrated by the synthesis of serine hydrolase inhibitor and its novel substituted derivatives

    Microflow photochemistry—a reactor comparison study using the photochemical synthesis of terebic acid as a model reaction

    No full text
    The continuous-microflow photochemical synthesis of terebic acid from maleic acid was investigated in two different microreactor set-ups. The results were subsequently compared to analogue experiments in a conventional chamber reactor. Based on conversion rates, reactor design and energy efficiency calculations, the simple microcapillary reactor showed the best overall performance

    Aggregation Control by Multi-stimuli-Responsive Poly(N-vinylamide) Derivatives in Aqueous System

    No full text
    Abstract Thermal and photo responsive copolymer based on N-vinylamide backbone was designed. Methoxyethyl group and azobenzene were selected to improve hydrophilicity and photoresponsive moieties, respectively. The N-(methoxyethyl)-N-vinylformamide was synthesized and copolymerized with N-vinylformamide by free radical polymerization. In order to control the nanosized structures, poly(N-vinylformamide) derivatives bearing azobenzene at the N-position near to the vinyl polymer main chain were synthesized by polymer reaction with the poly(N-vinylformamide-co-N-(methoxyethyl)-N-vinylformamide) and azobenzene. Aggregation size of the multi-stimuli-responsive polymer was controlled by preparation of the hydrophobic interaction at around N-position
    corecore