21 research outputs found

    HPF1-dependent PARP activation promotes LIG3-XRCC1-mediated backup pathway of Okazaki fragment ligation

    Get PDF
    DNA ligase 1 (LIG1) is known as the major DNA ligase responsible for Okazaki fragment joining. Recent studies have implicated LIG3 complexed with XRCC1 as an alternative player in Okazaki fragment joining in cases where LIG1 is not functional, although the underlying mechanisms are largely unknown. Here, using a cell-free system derived from Xenopus egg extracts, we demonstrated the essential role of PARP1-HPF1 in LIG3-dependent Okazaki fragment joining. We found that Okazaki fragments were eventually ligated even in the absence of LIG1, employing in its place LIG3-XRCC1, which was recruited onto chromatin. Concomitantly, LIG1 deficiency induces ADP-ribosylation of histone H3 in a PARP1-HPF1-dependent manner. The depletion of PARP1 or HPF1 resulted in a failure to recruit LIG3 onto chromatin and a subsequent failure in Okazaki fragment joining in LIG1-depleted extracts. Importantly, Okazaki fragments were not ligated at all when LIG1 and XRCC1 were co-depleted. Our results suggest that a unique form of ADP-ribosylation signaling promotes the recruitment of LIG3 on chromatin and its mediation of Okazaki fragment joining as a backup system for LIG1 perturbation

    Two distinct modes of DNMT1 recruitment ensure stable maintenance DNA methylation

    Get PDF
    Stable inheritance of DNA methylation is critical for maintaining differentiated phenotypes in multicellular organisms. We have recently identified dual mono-ubiquitylation of histone H3 (H3Ub2) by UHRF1 as an essential mechanism to recruit DNMT1 to chromatin. Here, we show that PCNA-associated factor 15 (PAF15) undergoes UHRF1-dependent dual mono-ubiquitylation (PAF15Ub2) on chromatin in a DNA replication-coupled manner. This event will, in turn, recruit DNMT1. During early S-phase, UHRF1 preferentially ubiquitylates PAF15, whereas H3Ub2 predominates during late S-phase. H3Ub2 is enhanced under PAF15 compromised conditions, suggesting that H3Ub2 serves as a backup for PAF15Ub2. In mouse ES cells, loss of PAF15Ub2 results in DNA hypomethylation at early replicating domains. Together, our results suggest that there are two distinct mechanisms underlying replication timing-dependent recruitment of DNMT1 through PAF15Ub2 and H3Ub2, both of which are prerequisite for high fidelity DNA methylation inheritance

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    Essential roles of Xenopus TRF2 in telomere end protection and replication.

    Get PDF
    TRF1 and TRF2 are double-stranded (ds) telomere DNA-binding proteins and the core members of shelterin, a complex that provides the structural and functional basis of telomere functions. We have reported that unlike mammalian TRF1 that constitutively binds to chromatin, Xenopus TRF1 (xTRF1) associates with mitotic chromatin but dissociates from interphase chromatin reconstituted in Xenopus egg extracts. This finding raised the possibility that xTRF1 and Xenopus TRF2 (xTRF2) contribute to telomere functions in a manner different from mammalian TRF1 and TRF2. Here, we focused on the role of xTRF2. We prepared chromatin reconstituted in egg extracts immunodepleted for xTRF2. Compared to mock-depleted nuclei, DNA damage response at telomeres was activated, and bulk DNAs were poorly replicated in xTRF2-depleted nuclei. The replication defect was rescued by inactivating ATR through the addition of anti-ATR neutralizing antibody, suggesting that ATR plays a role in the defect. Interestingly, the bulk DNA replication defect, but not the DNA damage response at telomeres, was rescued by supplementing the xTRF2-depleted extracts with recombinant xTRF2 (rTRF2). We propose that xTRF2 is required for both efficient replication of bulk DNA and protection from the activation of the DNA damage checkpoints pathway, and that those two functions are mechanistically separable

    MCM-BP regulates unloading of the MCM2–7 helicase in late S phase

    No full text
    Origins of DNA replication are licensed by recruiting MCM2–7 to assemble the prereplicative complex (pre-RC). How MCM2–7 is inactivated or removed from chromatin at the end of S phase is still unclear. Here, we show that MCM-BP can disassemble the MCM2–7 complex and might function as an unloader of MCM2–7 from chromatin. In Xenopus egg extracts, MCM-BP exists in a stable complex with MCM7, but is not associated with the MCM2–7 hexameric complex. MCM-BP accumulates in nuclei in late S phase, well after the loading of MCM2–7 onto chromatin. MCM-BP immunodepletion in Xenopus egg extracts inhibits replication-dependent MCM dissociation without affecting pre-RC formation and DNA replication. When excess MCM-BP is incubated with Xenopus egg extracts or immunopurified MCM2–7, it binds to MCM proteins and promotes disassembly of the MCM2–7 complex. Recombinant MCM-BP also releases MCM2–7 from isolated late-S-phase chromatin, but this activity is abolished when DNA replication is blocked. MCM-BP silencing in human cells also delays MCM dissociation in late S phase. We propose that MCM-BP plays a key role in the mechanism by which pre-RC is cleared from replicated DNA in vertebrate cells
    corecore