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Abstract 

 

TRF1 and TRF2 are double-stranded (ds) telomere DNA-binding proteins and the core 

members of shelterin, a complex that provides the structural and functional basis of 

telomere functions. We have reported that unlike mammalian TRF1 that constitutively 

binds to chromatin, Xenopus TRF1 (xTRF1) associates with mitotic chromatin but 

dissociates from interphase chromatin reconstituted in Xenopus egg extracts. This 

finding raised the possibility that xTRF1 and Xenopus TRF2 (xTRF2) contribute to 

telomere functions in a manner different from mammalian TRF1 and TRF2. Here we 

focused on the role of xTRF2. We prepared chromatin reconstituted in egg extracts 

immunodepleted for xTRF2. Compared to mock-depleted nuclei, DNA damage 

response at telomeres was activated and bulk DNAs were poorly replicated in 

xTRF2-depleted nuclei. The replication defect was rescued by inactivating ATR 

through the addition of anti-ATR neutralizing antibody, suggesting that ATR plays a 

role in the defect. Interestingly, the bulk DNA replication defect, but not the DNA 

damage response at telomeres, was rescued by supplementing the xTRF2-depleted 

extracts with recombinant xTRF2 (rTRF2). We propose that xTRF2 is required for both 

efficient replication of bulk DNA and protection from the activation of the DNA 

damage checkpoints pathway, and that those two functions are mechanistically 

separable. 
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Introduction 

 

The telomere is a specialized nucleoprotein complex at the chromosomal ends and 

essential for genomic stability. Telomere DNA consists of tandem repeats of ds DNA 

and each strand is guanine- or cytosine-rich (called G- or C-strand, respectively). The 

3’-end of the G-strand forms a single-stranded (ss) extension termed the G-tail. A 

conserved protein complex called shelterin provides the structural and functional basis 

of telomere chromatin (Miyoshi et al. 2008; Palm & de Lange 2008). Mammalian 

shelterin consists of six component proteins, TRF1, TRF2, Rap1, TIN2, TPP1, and 

POT1. Among them, TRF1 and TRF2 directly bind to ds telomere DNA repeats 

(TTAGGG)/(CCCTAA) as homodimers and POT1 binds to ss G-tail. 

The two major tasks of telomeres are to protect DNA ends from degradation 

and fusion, and to facilitate replication of DNA ends via the conventional 

semi-conservative replication and telomerase. Defects in telomere protection frequently 

induce chromosomal end-to-end fusions. Deprotected telomeres leading to the fusion 

are typically observed when mammalian TRF2 is inhibited by the over-expression of a 

dominant-negative form of TRF2 (van Steensel et al. 1998), indicating that TRF2 is 

responsible for the protection of telomeres in mammalian cells. When TRF2 is inhibited, 

damage-response markers are accumulated at telomeres, a cytological observation 

called telomere dysfunction-induced foci (TIFs) (Takai et al. 2003). The markers 

include phosphorylated histone H2AX (γ-H2AX), phosphorylated Rad17 (p-Rad17), 

and the Mre11-Rad50-Nbs1 (MRN) complex. Because those markers are typically 

detected at DNA double-strand break (DSB) sites, it is suggested that TIF formation 

indicates the deprotection of telomere end. Another task of telomeres is to facilitate 
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DNA replication at telomeres. Because telomere DNAs are repetitive sequences that 

potentially form higher-ordered DNA structures, it has been long expected that telomere 

DNAs pose difficulties in conventional DNA replication machineries. Indeed, it is now 

known that mammalian telomeres are one of the fragile sites, specific regions in the 

genome where the replication reaction tends to be stalled (Sfeir et al. 2009). Those 

regions potentially form DSBs by processing unreplicated ss DNA, and 

chromatid/chromosome breaks in M phase (Durkin & Glover 2007). It has been 

reported that TRF1 is required for the proficient replication of telomere DNAs in 

mammalian cells (Sfeir et al. 2009). 

Those studies indicate that shelterin components are responsible for the 

different roles of telomeres. Specifically, TRF1 and TRF2 are required for telomere 

DNA replication and telomere protection, respectively. Functionally insufficient 

telomeres activate DNA damage checkpoints, being recognized by two 

DNA-damage-sensor protein kinases, ATM and ATR, members of the 

phosphatidylinositol 3-kinase related kinase (PIKK) family. In mammals, ATM and 

ATR are activated by different sets of DNA damages: ATM responds to DSBs, whereas 

ATR is activated by replication fork stalling and ss DNAs (Abraham 2001). Once 

activated, they phosphorylate numerous downstream substrates including Cds1/Chk2 

and Chk1. The inactivation of TRF2 leads to the recognition of telomere DNA ends as 

DSBs, and this leads to the activation of ATM-dependent DNA damage checkpoint 

pathways (Karlseder et al. 1999). TRF1 deletions, meanwhile, lead to the activation of 

ATR (McNees et al. 2010; Sfeir et al. 2009). 

 Xenopus egg extracts are a rich source of nuclear proteins and recapitulate 

cell-cycle-related events in vitro. When demembraned Xenopus sperm chromatin is 
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incubated with interphase Xenopus egg extracts, the chromatin becomes decondensed, 

forms interphase nuclei demarcated by the nuclear membrane, and undergoes 

semi-conservative DNA replication. We have shown that shelterin components are 

conserved in Xenopus and the egg extracts provide a good model system to analyze 

telomere functions during the cell cycle. Specifically, we found that Xenopus TRF1 

(xTRF1) associates with mitotic chromatin but dissociates from the interphase 

chromatin upon the cell cycle’s entry to interphase in a replication-independent manner. 

In contrast, Xenopus TRF2 (xTRF2) constitutively associates with chromatin 

throughout the cell cycle (Nishiyama et al. 2006). Given that mammalian TRF1 is 

required for the efficient DNA replication at telomeres in S phase, our observations 

raise the question of whether or not xTRF2, rather than xTRF1, facilitates DNA 

replication at telomeres in the Xenopus egg extract system. In this study, we focused on 

the role of xTRF2 in the end protection and replication of telomeres in the Xenopus egg 

extracts. 
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Results 

 

xTRF2 is a homologue of mammalian TRF2 and localizes at telomeres 

TRF1 and TRF2 show similar domain organizations: They share TRFH (telomeric 

repeat binding factor homology) and Myb domains at the C-termini. The N-terminal 

regions of mammalian TRF1 and TRF2 are characterized by the presence of acidic and 

basic regions, respectively. In contrast, xTRF1 and xTRF2 do not possess significantly 

acidic or basic regions at their N-termini (Fig. 1A). The predicted xTRF amino acid 

sequences were not mistakenly deduced from 5’-truncated cDNAs because numerous 

xTRF1 EST (expressed sequence tag) sequences in the database had predicted an 

open-reading frame that has an in-frame stop codon upstream (-39 nt in xTRF1). 

Similarly, an in-frame stop codon upstream was found in Xenopus tropicalis TRF2 

(-147 nt), although not in Xenopus laevis TRF2 cDNA. 

Several lines of evidence suggest that xTRF1 and xTRF2 are homologues of 

mammalian TRF1 and TRF2, respectively. We first compared the amino acid sequences 

of the TRFH and Myb domains, and the linker region connecting the two domains 

between xTRF1 or xTRF2 and human TRF1 (hTRF1) or human TRF2 (hTRF2). Higher 

sequence identities and similarities were observed between TRF1 proteins and between 

TRF2 proteins derived from Xenopus laevis and human than between xTRF1 and 

xTRF2 (Nishiyama et al. 2006). It is known that TIN2 binds to both TRF1 and TRF2 in 

mammalian cells. Five of the seven amino acid residues of hTRF1 important for the 

interaction with human TIN2 (Chen et al. 2008) are conserved in xTRF1 but not in 

xTRF2. Similarly, the region in hTRF2 that is required and sufficient for the interaction 

with hTIN2 (Chen et al. 2008) shows higher homology with the corresponding region in 
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xTRF2 than with that in xTRF1 (Fig. 1C). Mouse TRF2 (mTRF2) interacts with mouse 

Rap1 (mRap1) through a conserved region between human and mouse (Sfeir et al. 

2010). This region shows higher homology with the corresponding region in xTRF2 

than with that in xTRF1 (Fig. 1C). hTRF2 F292, which corresponds to mTRF2 F290, 

one of the crucial amino acids for the interaction with mRap1, is conserved in xTRF2 

(xTRF2 F267) but not in xTRF1. Finally, hTRF2 regions required for the interaction 

with human Apollo (hApollo) are conserved in xTRF2, but not in xTRF1 (Fig. 1B). 

From these results, we conclude that xTRF1 and xTRF2 are homologues of mammalian 

TRF1 and TRF2, respectively. 

 xTRF2 specifically binds to ds telomere repeat DNA and is associated with 

reconstituted chromatin in both mitotic and interphase extracts (Nishiyama et al. 2006). 

We investigated whether endogenous xTRF2 is localized at the telomeres or not. We 

incubated Xenopus sperm chromatin for 90 min with interphase Xenopus egg extracts 

and then simultaneously examined the localizations of xTRF2 and telomere DNAs by 

indirect immunofluorescence experiments using anti-xTRF2 antibody and fluorescence 

in situ hybridization (FISH) experiments employing (CCCTAA)3 PNA (peptide-nucleic 

acid) as a probe, respectively (Fig. 2A). Focal signals of xTRF2 and telomere DNA 

were observed and a stack of images were recorded along the z-axis. The images were 

processed by deconvolution to highlight the focal signals. We observed 27.1±8.7 

xTRF2 foci and 24.7±7.0 telomere DNA foci in one nucleus (n=60 nuclei). 88.1±8.3% 

of the xTRF2 foci were merged with the telomere DNA foci, and 95.8±5.6% of the 

telomere DNA foci were merged with the xTRF2 foci. These results indicate that 

endogenous xTRF2 is specifically localized at telomeres in chromatin reconstituted in 

interphase egg extracts. 
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xTRF2 is required for telomere recruitment of xPOT1 

To investigate the function of xTRF2, we prepared interphase egg extracts 

immunodepleted for xTRF2 using anti-xTRF2 antibody (ΔTRF2 extracts) and 

mock-depleted extracts using normal rabbit IgG (Δmock extracts) as a control. Sperm 

chromatin incubated with these extracts for 90 min was isolated and analyzed by 

immunofluorescence and immunoblotting. We did not observe colocalization of xTRF2 

immunofluorescence signals and telomere FISH signals in chromatin formed in ΔTRF2 

extracts (Fig. 2A, ΔTRF2 nuclei). Chromatin-bound xTRF2 was detected in chromatin 

reconstituted in Δmock extracts (Δmock nuclei), but not in ΔTRF2 nuclei (Fig. 2B). 

Interestingly, chromatin-bound Xenopus POT1 (xPOT1) was detected in Δmock nuclei 

but not in ΔTRF2 nuclei (Fig. 2B). When ΔTRF2 extracts were supplemented with 

rTRF2 prior to incubation with sperm chromatin, rTRF2 localized at telomeres (Fig. 2A, 

rTRF2+ΔTRF2 nuclei) and xTRF2 and xPOT1 were detected in the chromatin fraction 

(Fig. 2B). These results suggest that xPOT1 associates with chromatin in an 

xTRF2-dependent manner. Geminin is an inhibitor of replication-initiating factor Cdt1. 

The addition of recombinant geminin protein to the extracts inhibited the replication 

both in ΔTRF2 and Δmock extracts, as expected (Fig. S1A in Supporting Information). 

xTRF2 and xPOT1 bound to chromatin in the presence of geminin, suggesting that 

DNA replication is not required for the recruitment of xTRF2 and xPOT1 to chromatin 

(Fig. 2C). We have previously found that xTRF1 dissociates from interphase chromatin 

in egg extracts (Nishiyama et al. 2006). Therefore, we assume that most, if not all, 

shelterin complex components are removed from telomere chromatin formed in ΔTRF2 

extracts. 
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To test the function of xTRF2 on the behavior of xTRF1, we examined the 

association of xTRF1 with chromatin in both ΔTRF2 and Δmock extracts. We found 

that xTRF1 bound to mitotic chromatin formed in ΔTRF2 and Δmock mitotic CSF 

(cytostatic-factor-arrested) extracts (see Experimental Procedure) and dissociated from 

the chromatin upon entry into interphase by the addition of Ca2+ to the ΔTRF2 and 

Δmock mitotic CSF extracts. This suggests that xTRF2 is dispensable for the 

cell-cycle-dependent chromatin association of xTRF1 (Fig. S1B in Supporting 

Information). 

 

Depletion of xTRF2 induces TIFs 

TRF2-defective mammalian cells show deprotected telomeres, as revealed by the 

presence of TIFs (Takai et al. 2003). To investigate whether telomeres of ΔTRF2 nuclei 

form TIFs, we measured the frequency of γ-H2AX-positive telomere FISH signals 

(TIFs) among the total FISH signals in one nucleus (Figs. 3A, B). In ΔTRF2 and Δmock 

nuclei, 64.3±4.0% and 0.3±0.3% of the telomeres were γ-H2AX-positive, respectively 

(n=40 nuclei), indicating the induction of DNA damage response at the telomeres in 

ΔTRF2 nuclei. The increase of TIFs in ΔTRF2 nuclei was not suppressed by the 

addition of rTRF2 to the extracts. As shown in Fig. 3B, the TIF frequency in 

ΔTRF2+rTRF2 nuclei (88.7±2.2%, n=40 nuclei) was significantly larger than that in 

Δmock+rTRF2 nuclei (0.1±0.1%, n=40 nuclei). Interestingly, the increase of TIFs in 

ΔTRF2 nuclei was not affected by the inhibition of DNA replication by geminin. TIF 

frequency in ΔTRF2+geminin nuclei (66.7±3.0%, n=56 nuclei) was significantly 

increased compared to that in Δmock+geminin nuclei (0.5±0.3%, n=56 nuclei) (Fig. 

3C). 
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We also observed the localization of other damage-response markers, 

p-Rad17 and Xenopus NBS1 (xNBS1), and found that anti-p-Rad17 antibody stained 

telomeres in ΔTRF2 nuclei but not in Δmock nuclei (Fig. S2 in Supporting Information). 

The accumulation of p-Rad17 at telomeres was not inhibited by supplying rTRF2 

(+rTRF2; Figs. S2A, B in Supporting Information) or replication inhibition by geminin 

(+Gem; Fig. S2C in Supporting Information). Furthermore, xNBS1 foci were observed 

at telomeres in ΔTRF2 nuclei, but not in Δmock nuclei (Fig. S3). The accumulation of 

xNBS1 at telomeres was not suppressed by rTRF2 (+rTRF2; Figs. S3A, B in 

Supporting Information) or the replication inhibition by geminin (+Gem; Fig. S3C in 

Supporting Information). xNBS1 was detected at telomeres even when five-fold larger 

amount of rTRF2 than that used in Fig. S3 was added to ΔTRF2 nuclei, suggesting that 

the persistent xNBS1 was not caused by insufficient supply of rTRF2 to the extracts 

(Fig. S4). These results indicate that TIFs are formed in ΔTRF2 nuclei in a 

replication-independent manner. 

ATM is a member of the PIKK family and is activated in DNA damage and 

deprotected telomeres by TRF2 inhibition in mammalian cells (Bakkenist et al. 2004; 

Lazzerini Denchi & de Lange 2007). To examine whether the ATM pathway is 

activated in ΔTRF2 nuclei, we analyzed whether ATM is phosphorylated or not. The 

phosphorylated form of ATM (p-ATM) was observed in ΔTRF2 extracts. Supplying 

rTRF2 (+rTRF2) or replication inhibition by geminin (+Gem) did not abolish the 

p-ATM signal from ΔTRF2 extracts (Fig. S5 in Supporting Information). This suggests 

that ATM is activated in ΔTRF2 extracts and the activation is independent of replication, 

as in the case of TIF formation in ΔTRF2 nuclei. 
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ATR but not ATM regulates bulk DNA replication in ΔTRF2 extracts 

We next measured the overall replication efficiency. Sperm chromatin was incubated 

with interphase egg extracts in the presence of [α-32P]dCTP. Samples were collected at 

intervals, purified DNAs were resolved by gel electrophoresis, and autoradiography of 

incorporated 32P signals was conducted (Fig. S6A in Supporting Information). The 

overall replication efficiency of the whole genome was determined as described in 

Experimental Procedures. As shown in Fig. 4A, the replication in Δmock nuclei was 

almost completed at 90-min incubation. In ΔTRF2 nuclei, the replication efficiency was 

reduced to approximately half of that in Δmock nuclei. When ΔTRF2 extracts were 

supplemented with rTRF2, the replication efficiency was recovered to the control level. 

These results indicate that xTRF2 is required for the efficient replication of whole 

sperm chromatin. 

 As described above, DNA damage response is activated and replication is 

repressed in ΔTRF2 nuclei. We therefore examine whether ATM and/or ATR regulates 

the replication efficiency. We inhibited the ATM or ATR pathway with KU55933, an 

ATM-specific inhibitor, or anti-Xenopus ATR (anti-xATR) neutralizing antibody, 

respectively. Those treatments effectively inhibited the downstream pathways, as 

measured in terms of Cds1 and Chk1 phosphorylation levels (Figs. S6B, C in 

Supporting Information). We found that the inhibition of ATR rescued the low 

replication efficiency in ΔTRF2 extracts, whereas the inhibition of ATM did not (Figs. 

4B, C). Treatment of the ΔTRF2 extracts with caffeine, an inhibitor of both ATM and 

ATR kinases also rescued the replication efficiency (Fig. S6D in Supporting 

Information). The Chk1 inhibitor, UCN-01 only partially relieved the replication 

inhibition in ΔTRF2 extracts (Fig. 4D). These results indicate that the activation of ATR, 
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not ATM, is responsible for the low replication efficiency in ΔTRF2 nuclei. 

We also analyzed the replication kinetics of each of three loci in the genome, 

telomere, centromere and 5S RNA genes. Sperm chromatin was incubated with 

interphase egg extracts in the presence of bromodeoxyuridine triphosphate (BrdUTP). 

DNA samples were collected at intervals, sonicated and fractionated by CsCl 

equilibrium density gradient ultracentrifugation. The fractionated DNAs were examined 

by blot hybridization with specific probes (see Supplemental Experimental Procedures). 

As shown in Supplementary text and Fig. S7 in Supporting Information, telomere 

regions are replicated in earlier kinetics than the centromere or 5S RNA genes. This 

result suggests that the telomere is an early replicating region in Xenopus sperm 

chromatin, and raised the possibility that a defect of telomere replication in ΔTRF2 

nuclei may inhibit the replication of late replicating regions. 

 

Loss of telomere FISH signals in ΔTRF2 nuclei 

We found that the number of telomere FISH signals was significantly smaller in ΔTRF2 

nuclei than in Δmock nuclei; there were 10.9±0.7 FISH signals in one ΔTRF2 nucleus 

and 19.0±0.7 in one Δmock nucleus (n=125 nuclei, p<0.001, Figs. 5A, B). When 

ΔTRF2 extracts were supplemented with rTRF2, the number of FISH signals was 

recovered to the level of Δmock nuclei (21.1±0.9 foci/nucleus, n=125 nuclei). To test 

whether the loss of telomere FISH signal is dependent on replication in ΔTRF2 nuclei, 

we inhibited the replication reaction in ΔTRF2 extracts. When the extract was treated 

with geminin, the number of FISH signals in ΔTRF2 nuclei was not reduced (21.2±1.4 

foci/nucleus, n=77 nuclei, Figs. 5C) compared to that in Δmock nuclei with or without 

geminin treatment, suggesting that telomeres that have undergone replication in the 
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absence of xTRF2 lose telomere FISH signals. 

 To analyze the mechanism of the loss of the telomere FISH signals, we 

analyzed telomere length in ΔTRF2 nuclei and found that the telomere lengths of both 

G strand and C strand were not altered in ΔTRF2 nuclei (Fig. 5D). The exact nature of 

the telomere replication defects in ΔTRF2 nuclei, which lead to the loss of telomere 

FISH signals, remains to be elucidated in the future. 
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Discussion 

 

xTRF1 and xTRF2 are unique compared to their mammalian counterparts; they lack the 

N-terminal acidic and basic regions that characterize mammalian TRF1 and TRF2, 

respectively (Nishiyama et al. 2006). It was reported that chicken TRF1 and TRF2 do 

not possess the N-terminal acidic domain and the basic domain, respectively (De 

Rycker et al. 2003; Konrad et al. 1999). Meanwhile, the amino acid residues required 

for the interaction with TIN2 and Apollo show higher homology between TRF1s and 

TRF2s in chicken and humans, suggesting that the protein binding domains characterize 

TRF1 and TRF2 proteins among different species. xTRF1 and xTRF2 behave 

differently during the cell cycle: xTRF1 associates with mitotic chromatin but not with 

interphase chromatin in egg extracts, whereas xTRF2 associates with both mitotic and 

interphase chromatins. In contrast, both mammalian TRF1 and TRF2 constitutively bind 

to telomere chromatin. We do not know whether the cell-cycle-dependent chromatin 

association of xTRF1 is common to all Xenopus somatic cells, unique to early 

development or in vitro reconstituted chromatin. We found that chromatin-bound 

xPOT1 was largely lost in ΔTRF2 nuclei (Fig. 2B). As xTRF2 is the only ds telomere 

DNA-binding protein in interphase chromatin, it is expected that the removal of xTRF2 

would lead to the collapse of the whole shelterin complex. Interestingly, xTRF1 is 

bound to the mitotic chromatin of ΔTRF2 nuclei (Fig. S1B in Supporting Information). 

This suggests that shelterin can be partially formed in the mitotic chromatin in an 

xTRF2-independent manner. In mammalian cells, the inactivation of TRF2 leads to the 

reduced association of POT1a, TPP1 and TIN2 at telomeres (Konishi & de Lange 2008; 
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Lazzerini Denchi & de Lange 2007; Loayza & de Lange 2003). It is unknown whether 

the dependence of mammalian shelterin formation on TRF2 is altered during the cell 

cycle. 

 

DNA damage response in ΔTRF2 nuclei 

A deficiency in telomere end protection results in damage response at telomeres, as 

characterized by ATM activation and the formation of TIFs (Takai et al. 2003). TIFs are 

formed in TRF2-deficient mammalian cells, indicating that TRF2 is required for the end 

protection at telomeres. We observed TIFs and p-ATM in ΔTRF2 nuclei (Figs. 3 and 

S2-5 in Supporting Information), indicating that xTRF2 is required for telomere end 

protection and suppression of ATM activation in the interphase nuclei. We found TIFs 

and p-ATM in ΔTRF2 extracts in both the absence and presence of geminin, indicating 

that ATM activation and DNA damage response in ΔTRF2 nuclei are 

replication-independent. Similarly, TIFs are formed in G0, G1 and S/G2 phases in 

TRF2-deficient mouse cells (Konishi & de Lange 2008). We propose that xTRF2 (and 

xPOT1) removal directly causes the deprotection of telomeres (Fig. 5E, pathway a). 

Unexpectedly, we observed that both TIF formation and the ATM activation in ΔTRF2 

nuclei were not suppressed by the addition of rTRF2 to egg extracts. It is possible that 

the removal of both xTRF2 and xPOT1 in ΔTRF2 nuclei was too harsh to allow the 

re-establishment of functional shelterin by simply supplying rTRF2. Alternatively, the 

removal of xTRF2 by immunodepletion may result in the co-depletion of other factors 

essential for telomere end protection. 

 

Replication defects in ΔTRF2 nuclei 
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When xTRF2 was immunodepleted, the overall replication efficiency of bulk DNA was 

significantly reduced (Fig. 4A). This reduction was recovered in ΔTRF2 nuclei treated 

with anti-xATR neutralizing antibody (Fig. 4C). As telomere DNAs replicate in egg 

extracts at relatively early time points (Supplementary text and Fig. S7 in Supporting 

Information), it is likely that the defectively replicated telomeres elicit ATR signals that 

prevent the replication of the rest of the genome at later time points (Fig. 5E, pathway c). 

Given that mouse TRF1 is required for the replication fork progression at telomeres 

(Sfeir et al. 2009) and that xTRF1 is absent from chromatin in interphase (Nishiyama et 

al. 2006), it is likely that xTRF2 instead of xTRF1 plays an important role in telomere 

replication. However, in spite of repeated trials, measurements of replicated telomeres 

in Δ TRF2 extracts in BrdUTP substitution experiments were unsuccessful. Further 

study is necessary to elucidate the mechanism underlying the defective replication of 

bulk and telomere DNAs in ΔTRF2 nuclei. 

 It is interesting that the inhibition of the general replication efficiency was 

restored in ΔTRF2+rTRF2 extracts, where TIFs and p-ATM were still observed (Fig. 

5E, pathway b). This suggests that DNA damage responses characterized by TIFs and 

replication defects of bulk DNAs are caused by different downstream pathways of 

xTRF2 depletion. We also observed that the number of telomere FISH signals was 

significantly reduced in ΔTRF2 nuclei (Figs. 5A-C). DNA replication contributes to the 

loss of telomere FISH signals, because the loss was not observed in the geminin-treated 

extract. The length of telomere DNA in ΔTRF2 nuclei was similar to that in Δmock 

nuclei (Fig. 5D). It should be elucidated in the future how the number of telomere FISH 

signals is diminished in ΔTRF2 nuclei. It is also notable that the loss of telomere FISH 

signal is rescued by the supplementation of ΔTRF2 extracts with rTRF2, a situation 
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similar to the recovery of the reduced bulk DNA replication by rTRF2 and distinct to 

the inability of rTRF2 to suppress TIF formation. We hereby propose that two roles of 

xTRF2 in telomere end protection and replication: xTRF2 protects telomeres from 

activating DNA damage responses, probably as a member of the shelterin complex, and 

xTRF2 on its own regulates DNA replication (Fig. 5E). 



 

Muraki et al. 18 

Experimental Procedures 

 

Antibodies, inhibitors and recombinant proteins 

Anti-xTRF2 (Nishiyama et al. 2006), anti-xPOT1 (against the full-length polypeptide), 

and anti-Xenopus NBS1 (against the polypeptide fragment representing a.a. 392-763) 

rabbit antibodies were raised in our laboratory. Anti-human histone H2B rabbit 

antibody (#07-371) and anti-human phospho-H2AX (Ser139; γ-H2AX) rabbit antibody 

(#07-164) were from Upstate. Anti-human p-Rad17 (Ser645) rabbit antibody that 

recognizes phosphorylated Xenopus Rad17 (Ser650) (#03421) and anti-human p-Chk1 

(Ser345) rabbit antibody that recognizes phosphorylated Xenopus Chk1 (Ser344) 

(#2348) were from Cell Signaling. Anti-human p-ATM (Ser1981) rabbit antibody that 

recognizes phosphorylated Xenopus ATM (Ser1989) was from Rockland 

(#600-401-398). Anti-Xenopus ATM rabbit antibody and anti-Xenopus ATR rabbit 

antibody were a gift from Dr. William G. Dunphy (California Institute of Technology) 

(Kumagai et al. 2004; Yoo et al. 2004). Anti-human Chk1 mouse antibody was from 

Santa Cruz (sc-8408). Anti-Xenopus Cds1 rabbit antibody was a gift from Dr. Takeo 

Kishimoto (Tokyo Institute of Technology) (Gotoh et al. 2001). Normal rabbit IgG was 

from Santa Cruz (sc-2027). Alkaline phosphatase-conjugated anti-rabbit IgG swine 

antibody was from DAKO (D0306). Horseradish peroxidase (HRP)-conjugated 

anti-rabbit IgG donkey (NA934) and HRP-conjugated anti-mouse IgG sheep antibodies 

(NA931) were from GE Healthcare. Alexa488-anti-rabbit IgG goat antibody was from 

Molecular Probes (A-11034). Caffeine was from WAKO Chemicals. KU55933 and 

UCN-01 were from Calbiochem. Recombinant xTRF2 was produced in vitro using the 

TNT T7Quick Coupled Transcription/Translation System (Promega). GST-tagged 
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Xenopus geminin was produced in E. coli (Kumagai et al. 2004) and purified using 

glutathione-Sepharose high-performance beads (GE Healthcare). 

 

Xenopus extracts and immunodepletion 

Xenopus interphase extracts were prepared as described (Blow 1993). Demembraned 

Xenopus sperm chromatin was incubated with Xenopus egg extracts at 23˚C. For the 

immunodepletion of xTRF2, 100 µ l of interphase extract was treated three times with 

30 µ l of 50% Protein A-Sepharose 4 Fast Flow beads solution (GE Healthcare) 

conjugated with 30 µg of anti-xTRF2 antibody. For control (mock-depleted) extracts, 30 

µg of normal rabbit IgG, instead of anti-xTRF2, was similarly used. To supplement 

rTRF2, reticulocyte lysate producing rTRF2 or its control was directly added to the 

Xenopus extracts. Geminin was added to the extracts to a final concentration of 30 

µg/ml to inhibit replication. The final concentrations of the other inhibitors in extracts 

were as follows: 10 µM KU55933, 5 ng/µl anti-xATR antibody, 100 nM UCN-01, and 

3 mM caffeine. Reconstitution of nuclei in extracts was performed as described (Blow 

1993). Chromatin fractions and nuclear fractions were prepared as described (Yoo et al. 

2006). Xenopus CSF-arrested extracts were prepared according to Murray (Murray 

1991) with minor modifications (Nishiyama et al. 2000). 

 

Indirect immunofluorescence and FISH analyses of Xenopus nuclei 

Indirect immunofluorescence and FISH analyses were performed as described 

(Funabiki & Murray 2000; Nabetani et al. 2004). Demembraned sperm chromatin 

(500-2,000 nuclei per µl) was incubated with 20 µl of extracts for 90 min. The reaction 

was terminated by the addition of 80 µ l of chromosome dilution buffer (10 mM 
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HEPES-KOH pH7.4, 200 mM KCl, 0.5 mM MgCl2, 0.5 mM EGTA, and 250 mM 

sucrose) and incubation for 15 min at room temperature. Samples were fixed for 5 min 

with 300 µ l of chromosome fixation buffer (20% glycerol, 0.5% Triton X-100, and 

3.7% formaldehyde in MMR buffer; MMR buffer contains 100 mM NaCl, 2 mM KCl, 

5 mM HEPES-KOH, pH 7.5, 1 mM MgCl2, 2 mM CaCl2, and 0.1 mM EGTA) and 

chromatin was attached onto poly-L-lysine-coated cover slips by centrifugation through 

a 5 ml cushion of 40% glycerol in MMR buffer at 1,580 xg, 30 min. After the samples 

were washed twice with PBS, nuclei were fixed onto cover slips with ice-cold methanol 

for 10 min. The fixed nuclei were permeabilized by treatment for 10 min at room 

temperature with 0.5% Triton X-100 in PBS. Samples were washed with PBS three 

times and treated with the blocking buffer (3% bovine serum albumin and 0.2% Triton 

X-100 in PBS for xTRF2, p-Rad17, and xNBS1; 0.1% bovine serum albumin, 0.1% 

skim milk and 0.2% Triton X-100 in PBS for γ-H2AX) for 15 hr at 4˚C. Samples were 

incubated with primary antibodies diluted with 100 µl of the blocking buffer, overlaid 

by a cover slip and incubated for 15 hr at 4˚C. After washing three times with PBS, the 

samples were treated with secondary antibodies in the blocking buffer for 2 hr at room 

temperature. The samples for FISH experiments were prepared as described (Nabetani 

et al. 2004). The samples were counterstained for DNA with 1 µg/ml DAPI in PBS. 

Fluorescent images were obtained with a DeltaVision microscope (Applied Precision) 

equipped with a charge-coupled device camera (Photometrics). Images were processed 

with softWoRx (Applied Precision) using the same signal strength scale in all 

experiments and Photoshop (Adobe) software. 

 

In gel hybridization 
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The preparation of genomic DNA was performed as described (Cohen et al. 1999) with 

minor modifications and in gel hybridization was performed as described (Nabetani & 

Ishikawa 2009). Demembraned sperm chromatin was incubated with 100 µl of extracts 

for 90 min. The reaction was stopped by the addition of 5 volumes of 30 mM EDTA, 

1% SDS, 0.5% Triton X-100, and 0.3 M NaCl, followed by incubation for 16 hr at 37˚C 

with 0.1 mg/ml Proteinase K. DNA was extracted with phenol treatment and 

phenol/chloroform treatment, digested with 0.2 mg/ml RNase A for 6 hr at 37˚C, and 

precipitated with isopropanol. DNA was digested with HaeIII for 16 hr at 37˚C and 

precipitated with ethanol. 

 

Replication assay 

Replication of sperm nuclei was performed as described (Dasso & Newport 1990; 

Walter et al. 1998) with minor modifications. Briefly, 40 µl of the Xenopus egg extracts 

including 500 nuclei/µl of sperm chromatin was incubated in the presence of 0.2 µCi 

(3000 Ci/mmol) of [α-32P]dCTP. Two µl aliquots were dispensed at 15 min intervals 

and the reactions were terminated by mixing with 18 µl of stop solution (5 mM 

Tris-HCl, pH 8.0, 1% SDS, 5 mM EDTA, and 0.6 mg/ml proteinase K). The samples 

were subjected to agarose gel electrophoresis and autoradiographs were analyzed and 

quantitated with a Typhoon 9400 phosphorimager and ImageQuant software (GE 

Healthcare). Replication efficiency was determined as described previously (Blow & 

Laskey 1986), where the endogenous concentration of dCTP in the extracts was 

assumed to be 50 µM. 
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Figure legends 

 

Figure 1 

Alignments of amino acid sequences of human and Xenopus TRF1 and TRF2 

(A) Schematic representation of the domain structures of human and Xenopus TRF1s 

and TRF2s. Positions of acidic and basic regions, TRFH domain and Myb domain are 

indicated. The regions involved in the interaction with hTIN2, hApollo and the region 

corresponding to mTRF2 region interacting with mRap1 are indicated by bars. 

(B, C) Alignments of TRF1 and TRF2 amino acid sequences of the regions required for 

the interactions with hTIN2, hApollo, and mRap1. Amino acid residues conserved 

between human and Xenopus TRF1s and TRF2s are hatched. 

(B) Boxes represent the amino acid residues of hTRF1 involved in the interaction with 

hTIN2, and those of hTRF2 involved in the interaction with hApollo. Asterisks indicate 

amino acid residues essential for the interaction in the two interacting domains. hTRF1 

D139-A-Q141 forms an anti-parallel β-sheet with hTIN2, and E146 and E192 of hTRF1 

make four electrostatic interactions with hTIN2 (Chen et al. 2008). 

(C) Boxes show the amino acid residues of hTRF2 required and sufficient for the 

interaction with hTIN2 (Chen et al. 2008), and the amino acid residues of hTRF2 

corresponding to those of mTRF2 sufficient for the interaction with mRap1. Asterisks 

indicate amino acid residues required for mRap1-mTRF2 interaction (Sfeir et al. 2010). 

 

Figure 2 

Localization and immunodepletion of xTRF2 in chromatin 

(A) Colocalization of xTRF2 and telomeric DNA in chromatin reconstituted in 
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interphase egg extracts (upper), ΔTRF2 extracts (middle) and ΔTRF2+rTRF2 extracts 

(bottom). Signals of indirect immunofluorescence using anti-xTRF2 antibodies (green), 

FISH by the telomere probe (red), and chromatins stained with DAPI (blue) are shown. 

Merge represents superimposed image of the three signals. Enlarged images of the area 

enclosed by a white square are shown on the right. Bar, 15 µm.  

(B, C) Immunodepletion of xTRF2. Chromatin reconstituted in egg extracts was 

isolated and chromatin-bound xTRF2, xPOT1, and histone H2B (H2B, a loading 

control) were analyzed by immunoblotting. Results of chromatin reconstituted in 

ΔTRF2 or Δmock extracts are shown. (B) +rTRF2, Extracts were supplemented with 

rTRF2. (C) +Gem, treated with geminin. Chromatin-bound proteins derived from equal 

amounts of extracts were loaded and analyzed by immunoblotting experiments. In the 

case of the +Gem samples, DNA replication did not happen leading to the relatively 

weaker signals for H2B compared to the -Gem samples that duplicated chromatin by 

replication. Arrows indicate the position of xPOT1 signals and the fast-migrating bands 

are non-specific signals. 

 

 

Figure 3 

TIFs in ΔTRF2 nuclei 

(A) Colocalization of γ-H2AX and telomere FISH foci. Examples of images of γ-H2AX 

(green), telomere (red) and DNA (blue) are shown. Enlarged images of the area 

enclosed by a white square in the merged pictures (Merge) are shown. +rTRF2, Extracts 

were supplemented with rTRF2. Bar, 15 µm. 

(B) TIF formation was not suppressed by supplementation with rTRF2. Percentages of 
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γ-H2AX-positive telomere foci among all telomere foci are shown. Horizontal bars 

represent the averages. Extracts were supplemented with rTRF2 (+rTRF2) or buffer 

control (-). The number of nuclei examined was 40 in three independent experiments. 

(C) TIFs were formed in a replication-independent manner. Percentages of 

γ-H2AX-positive telomere foci among all telomere foci are shown. Extracts were 

supplemented with geminin (+Gem) or buffer control (-). Horizontal bars represent the 

averages. The number of nuclei examined was 56 in three independent experiments. 

 

Figure 4 

Anti-xATR antibody rescues the decreased replication efficiencies of bulk DNA in 

ΔTRF2 nuclei 

Replication efficiencies of bulk DNA in ΔTRF2  and Δmock nuclei. rTRF2 (A), an 

ATM inhibitor (10 µM KU55933) (B), 5 ng/µl anti-xATR neutralizing antibody (C) or 

a Chk1 inhibitor (100 nM UCN-01) (D) was added to the extracts as indicated. 

 

Figure 5 

Loss of telomere FISH signals in replicated chromatin in the absence of xTRF2 

(A) Telomere FISH signals in ΔTRF2 nuclei. Images of telomere FISH signals (red) 

and DNA (blue) detected in ΔTRF2 and Δmock nuclei are presented. rTRF2 or geminin 

(Gem) was added to ΔTRF2 extracts prior to incubation with sperm chromatin as in Fig. 

2. Bar, 15 µm. 

(B, C) Number of telomere FISH signals per nucleus in rTRF2-supplemented (+rTRF2) 

extracts (B), geminin-treated (+Gem) extracts (C), and their buffer control (-). 

Horizontal bars represent the averages. The number of nuclei examined was 125 (B) 
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and 77 (C) each in six independent experiments.  

(D) DNAs from ΔTRF2  chromatin and Δmock chromatin were digested with HaeIII, 

run in a gel, and in-gel hybridized with indicated probes. 

(E) Dual roles of xTRF2 in telomere replication and telomere end protection 

Interphase nuclei lack xTRF1 and the shelterin complex likely consists of five proteins, 

xTRF2, Rap1, TIN2, TPP1, and xPOT1 (a1). Immunodepletion of xTRF2 led to the 

dissociation of xPOT1 from chromatin (a2). Depletion of xTRF2 activates ATM and 

telomere end deprotection (shown by a blue circle) (a3). xTRF2 is required for DNA 

replication (b1 and b2). When xTRF2 is depleted from interphase extracts (c1), the 

replication fork is stalled at telomeres (shown by a red circle), leading to the activation 

of ATR at telomeres (c2). The activated ATR represses other replication forks 

throughout the genome, resulting in the halting of the genome-wide replication (c3). 

Supplementation with rTRF2 rescued the DNA replication defects but not the 

deprotected telomeres, suggesting that telomere end protection requires the precise 

organization of the shelterin complex. 
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