1,144 research outputs found
Inelastic electron tunneling spectroscopy of nanoporous gold films
We investigated the localized electronic properties of nanoporous gold films
by using an ultra-high vacuum scanning tunneling microscope at low temperature
(4.2 K). Second derivative scanning tunneling spectroscopy shows the plasmon
peaks of the nanoporous gold films, which are excited by inelastic tunneling
electrons. We propose that the nanorod model is appropriate for nanoporous gold
studies at the nanometer-scale. These results are supported by a 3D electron
tomography analysis and theoretical calculations of nanoporous gold with
ellipsoid shape.Comment: 6 pages, 3 figures. This is the authors' version. The published, high
resolution version of this paper, Copyright (2014) by the American Physical
Society, can be found at http://journals.aps.org/prb
Direct k-space mapping of the electronic structure in an oxide-oxide interface
The interface between LaAlO3 and SrTiO3 hosts a two-dimensional electron
system of itinerant carriers, although both oxides are band insulators.
Interface ferromagnetism coexisting with superconductivity has been found and
attributed to local moments. Experimentally, it has been established that Ti 3d
electrons are confined to the interface. Using soft x-ray angle-resolved
resonant photoelectron spectroscopy we have directly mapped the interface
states in k-space. Our data demonstrate a charge dichotomy. A mobile fraction
contributes to Fermi surface sheets, whereas a localized portion at higher
binding energies is tentatively attributed to electrons trapped by O-vacancies
in the SrTiO3. While photovoltage effects in the polar LaAlO3 layers cannot be
excluded, the apparent absence of surface-related Fermi surface sheets could
also be fully reconciled in a recently proposed electronic reconstruction
picture where the built-in potential in the LaAlO3 is compensated by surface
O-vacancies serving also as charge reservoir.Comment: 8 pages, 6 figures, incl. Supplemental Informatio
STM fluorescence of porphyrin enhanced by a strong plasmonic field and its nanoscale confinement in an STM cavity
We have investigated scanning tunneling microscope-induced luminescence STML from porphyrin molecules by varying the tip PtIr, Ag, and Au/substrate Pt, Ag, Au, and indium tin oxide combinations. Strong molecular fluorescence by highest-occupied molecular orbital and lowest-unoccupied molecular orbital transition comparable to plasmon-mediated light is emitted only when both the substrate and the tip are metals but not in other cases. Along with calculations of relative electromagnetic-field powers in the tip-substrate gaps, the enhancement of STML from molecules can be interpreted in terms of the strong plasmon field and its confinement in an STM cavity. We also find rather strong energy-forbidden fluorescence of porphyrin in an Au-tip/porphyrin/Au cavity that occurs under the extremely strong field in the plasmonic nanocavity
Vectorial Control of Magnetization by Light
Coherent light-matter interactions have recently extended their applications
to the ultrafast control of magnetization in solids. An important but
unrealized technique is the manipulation of magnetization vector motion to make
it follow an arbitrarily designed multi-dimensional trajectory. Furthermore,
for its realization, the phase and amplitude of degenerate modes need to be
steered independently. A promising method is to employ Raman-type nonlinear
optical processes induced by femtosecond laser pulses, where magnetic
oscillations are induced impulsively with a controlled initial phase and an
azimuthal angle that follows well defined selection rules determined by the
materials' symmetries. Here, we emphasize the fact that temporal variation of
the polarization angle of the laser pulses enables us to distinguish between
the two degenerate modes. A full manipulation of two-dimensional magnetic
oscillations is demonstrated in antiferromagnetic NiO by employing a pair of
polarization-twisted optical pulses. These results have lead to a new concept
of vectorial control of magnetization by light
Femtosecond X-ray emission study of the spin cross-over dynamics in haem proteins
In haemoglobin (consisting of four globular myoglobin-like subunits), the
change from the low-spin (LS) hexacoordinated haem to the high spin (HS)
pentacoordinated domed form upon ligand detachment and the reverse process upon
ligand binding, represent the transition states that ultimately drive the
respiratory function. Visible-ultraviolet light has long been used to mimic the
ligand release from the haem by photodissociation, while its recombination was
monitored using time-resolved infrared to ultraviolet spectroscopic tools.
However, these are neither element- nor spin-sensitive. Here we investigate the
transition state in the case of Myoglobin-NO (MbNO) using femtosecond Fe Kalpha
and Kbeta non-resonant X-ray emission spectroscopy (XES) at an X-ray
free-electron laser upon photolysis of the Fe-NO bond. We find that the
photoinduced change from the LS (S = 1/2) MbNO to the HS (S = 2)
deoxy-myoglobin (deoxyMb) haem occurs in ca. 800 fs, and that it proceeds via
an intermediate (S = 1) spin state. The XES observables also show that upon NO
recombination to deoxyMb, the return to the planar MbNO ground state is an
electronic relaxation from HS to LS taking place in ca. 30 ps. Thus, the entire
ligand dissociation-recombination cycle in MbNO is a spin cross-over followed
by a reverse spin cross-over process
Dynamic, mating-induced gene expression changes in female head and brain tissues of Drosophila melanogaster
BACKGROUND: Drosophila melanogaster females show changes in behavior and physiology after mating that are thought to maximize the number of progeny resulting from the most recent copulation. Sperm and seminal fluid proteins induce post-mating changes in females, however, very little is known about the resulting gene expression changes in female head and central nervous system tissues that contribute to the post-mating response. RESULTS: We determined the temporal gene expression changes in female head tissues 0-2, 24, 48 and 72 hours after mating. Females from each time point had a unique post-mating gene expression response, with 72 hours post-mating having the largest number of genes with significant changes in expression. At most time points, genes expressed in the head fat body that encode products involved in metabolism showed a marked change in expression. Additional analysis of gene expression changes in dissected brain tissues 24 hours post-mating revealed changes in transcript abundance of many genes, notably, the reduced transcript abundance of genes that encode ion channels. CONCLUSIONS: Substantial changes occur in the regulation of many genes in female head tissues after mating, which might underlie aspects of the female post-mating response. These results provide new insights into the physiological and metabolic changes that accompany changes in female behaviors
Recommended from our members
A Gata3–Mafb transcriptional network directs post-synaptic differentiation in synapses specialized for hearing
Information flow through neural circuits is determined by the nature of the synapses linking the subtypes of neurons. How neurons acquire features distinct to each synapse remains unknown. We show that the transcription factor Mafb drives the formation of auditory ribbon synapses, which are specialized for rapid transmission from hair cells to spiral ganglion neurons (SGNs). Mafb acts in SGNs to drive differentiation of the large postsynaptic density (PSD) characteristic of the ribbon synapse. In Mafb mutant mice, SGNs fail to develop normal PSDs, leading to reduced synapse number and impaired auditory responses. Conversely, increased Mafb accelerates synaptogenesis. Moreover, Mafb is responsible for executing one branch of the SGN differentiation program orchestrated by the Gata3 transcriptional network. Remarkably, restoration of Mafb rescues the synapse defect in Gata3 mutants. Hence, Mafb is a powerful regulator of cell-type specific features of auditory synaptogenesis that offers a new entry point for treating hearing loss. DOI: http://dx.doi.org/10.7554/eLife.01341.00
Determinant Structure of the Rational Solutions for the Painlev\'e IV Equation
Rational solutions for the Painlev\'e IV equation are investigated by Hirota
bilinear formalism. It is shown that the solutions in one hierarchy are
expressed by 3-reduced Schur functions, and those in another two hierarchies by
Casorati determinant of the Hermite polynomials, or by special case of the
Schur polynomials.Comment: 19 pages, Latex, using theorem.st
- …
