6 research outputs found

    Macroscopically uniform and flat lithium thin film formed by electrodeposition using multicomponent additives

    Get PDF
    It is well-known that the electrodeposition of lithium usually results in the formation of dendrites on the electrode surface. This limits the utilization of metallic lithium as a material for, for example, the negative electrodes of rechargeable batteries. In aqueous solutions, similar dendritic growth of metals is often observed during electrodeposition; however, utilization of multicomponent additives has overcome this shortcoming. Here, we report that the simultaneous utilization of four different additives greatly suppresses the formation of lithium dendrites during electrodeposition in a tetraglyme-based solution. The roles of the additives are discussed, based on the results of electrochemical quartz crystal microbalance measurements and X-ray photoelectron spectroscopy

    Edge‐Site‐Free and Topological‐Defect‐Rich Carbon Cathode for High‐Performance Lithium‐Oxygen Batteries

    No full text
    Abstract The rational design of a stable and catalytic carbon cathode is crucial for the development of rechargeable lithium‐oxygen (LiO2) batteries. An edge‐site‐free and topological‐defect‐rich graphene‐based material is proposed as a pure carbon cathode that drastically improves LiO2 battery performance, even in the absence of extra catalysts and mediators. The proposed graphene‐based material is synthesized using the advanced template technique coupled with high‐temperature annealing at 1800 °C. The material possesses an edge‐site‐free framework and mesoporosity, which is crucial to achieve excellent electrochemical stability and an ultra‐large capacity (>6700 mAh g−1). Moreover, both experimental and theoretical structural characterization demonstrates the presence of a significant number of topological defects, which are non‐hexagonal carbon rings in the graphene framework. In situ isotopic electrochemical mass spectrometry and theoretical calculations reveal the unique catalysis of topological defects in the formation of amorphous Li2O2, which may be decomposed at low potential (∼ 3.6 V versus Li/Li+) and leads to improved cycle performance. Furthermore, a flexible electrode sheet that excludes organic binders exhibits an extremely long lifetime of up to 307 cycles (>1535 h), in the absence of solid or soluble catalysts. These findings may be used to design robust carbon cathodes for LiO2 batteries
    corecore